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Three-Parameter Bayesian Estimation Problem 

Michael Lloyd, Professor of Mathematics 

Abstract 

A Bayesian estimate of three parameters will be derived using PERT, triangular distributions, 

and R. An analyst at a large corporation introduced me to this problem. 

Distributions 

Two-Parameter Beta Distribution Beta(𝛼, 𝛽) has the following probability density function: 

pdf 𝑓(𝑥) =
𝑥𝛼−1(1−𝑥)𝛽−1

B(𝛼,𝛽)
,  where 0 < 𝑥 < 1, B(𝛼, 𝛽) =

Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
, 𝛼 > 0, 𝛽 > 0 

The accompanying graph shows Beta 

probability density functions for various values 

of its parameters. 

The Four-Parameter Beta Distribution 

Beta(𝛼, 𝛽, 𝑎, 𝑐) is a linear transformation of 

Beta(𝛼, 𝛽) that maps the support from [0,1] to 
[𝑎, 𝑐]. An application of the change-of-variable 

technique gives the following probability 

density function for the Four-Parameter Beta 

Distribution:  
https://en.wikipedia.org/wiki/Beta_distribution 

pdf 𝑓(𝑥) =
(𝑥−𝑎)𝛼−1(𝑐−𝑥)𝛽−1

B(𝛼,𝛽)(𝑐−𝑎)𝛼+𝛽−1 ,  where 𝑎 < 𝑥 < 𝑐, 𝛼 > 0, 𝛽 > 0, 𝑎 < 𝑐 

The 𝑃𝐸𝑅𝑇(𝑎, 𝑏, 𝑐) distribution is a special case of the Four-Parameter Beta Distribution where 

𝑎 < 𝑏 < 𝑐, 𝑏 is the mode and the mean is 𝜇 =
𝑎+4𝑏+𝑐

6
. That is, 

PERT(𝑎, 𝑏, 𝑐) = Beta (
4𝑏 + 𝑐 − 5𝑎

𝑐 − 𝑎
,
5𝑐 − 𝑎 − 4𝑏

𝑐 − 𝑎
, 𝑎, 𝑐) 

 

https://en.wikipedia.org/wiki/Beta_distribution
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The accompanying graph shows typical PERT 

probability density functions for various values 

of the parameter. 

This distribution was proposed in 1962 by CE 

Clark, and the abbreviation PERT originally 

stood for Program Evaluation and Review 

Technique. 

https://en.wikipedia.org/wiki/PERT_distribution 

 
 

As is done in practice, in this paper, we will replace the 

PERT distributions with the simpler Triangular 

Distribution Triang(𝑎, 𝑏, 𝑐) where 𝑎 < 𝑏 < 𝑐, 𝑏 is the 

mode. 

 
Consulting Problem 

Assume the random variables (𝐴, 𝐵, 𝐶) = (𝑚𝑖𝑛, 𝑚𝑜𝑑𝑒, 𝑚𝑎𝑥) are independent where 

𝐴~Triang(6,10,14), 𝐵~Triang(30,50,70), 𝐶~Triang(900,1000,1100) 

Think of this as a simple way to turn the following uncertainties into distributions: 

𝐴 = 10 ± 4, 𝐵 = 50 ± 20, 𝐶 = 1000 ± 100 

Observe a single random sample from PERT(𝑎, 𝑏, 𝑐) with pdf 𝑓(𝑥|𝑎, 𝑏, 𝑐). We will update the 

mode parameters 𝑎, 𝑏, 𝑐 for the particular sample 𝑥 = 8 using Bayesian techniques. These 

numbers were supplied by an analyst at a large corporation who does not wish to be identified. 

Let ℎ(𝑝), where 𝑝 = (𝑎, 𝑏, 𝑐), be the prior probability density function for the parameters 

𝐴, 𝐵, and 𝐶. 

We will use the R library mc2d (Tools for Two-Dimensional Monte-Carlo Simulations) to easily 

create triangular densities. The following R script will create the prior probability distribution ℎ 

for (𝐴, 𝐵, 𝐶). By independence, the joint probability density function is the product of the 

marginal density functions. 

  

https://en.wikipedia.org/wiki/PERT_distribution
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library(mc2d) 

prior = function(p) {  

 dtriang( x=p[1], min=6, mode=10, max=14 )* # a pdf 

 dtriang( x=p[2], min=30, mode=50, max=70 )* # b pdf 

 dtriang( x=p[3], min=900, mode=1000, max=1100 )  # c pdf 

 } # prior 

We will use the R library cubature (Adaptive Multivariate Integration over Hypercubes) to check 

that ℎ integrates to 1 over its support ([6,14] × [30,70] × [900,1100] ⊂ ℝ3). The graph of ℎ is 

a scalar field over this box with maximal density at (10,50,1000). 

library(cubature) 

adaptIntegrate( prior, lowerLimit = c(6, 30, 900), 

 upperLimit = c(14, 70, 1100) ) 

$integral 

[1] 1 

$error 

[1] 2.220446e-16 

$functionEvaluations 

[1] 495 

The following R script checks that the sample PERT 

probability density function 𝑓(𝑥, 10,50,1000) has 

area 1. 

 
ol = function(x) { dpert(x, min=10, mode=50, max=1000) } 

curve( ol , xlim=c(10,1000) ,ylab='pdf' , 

 main='PERT(10,50,1000)') 

integrate( f=ol , lower=10, upper=1000 ) 

1 with absolute error < 9e-08 

The joint distribution of (𝑋, 𝐴, 𝐵, 𝐶) when 𝑋 = 8 is 𝑗𝑜𝑖𝑛𝑡(𝑎, 𝑏, 𝑐) = 𝑓(𝑥 = 8|𝑎, 𝑏, 𝑐)ℎ(𝑎, 𝑏, 𝑐). 

The posterior probability distribution 𝑝(𝑎, 𝑏, 𝑐) for the parameter (𝐴, 𝐵, 𝐶) given 𝑥 = 8 is 
proportional this joint distribution: 𝑝(𝑎, 𝑏, 𝑐) ∝ 𝑓(𝑥 = 8|𝑎, 𝑏, 𝑐)ℎ(𝑎, 𝑏, 𝑐) 
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joint = function(p) 

 { dpert(x=8, min=p[1], mode=p[2], max=p[3]) * prior(p) } 

# The variable p in R is a vector with length three 

We used the cubature library to integrate the joint 

distribution over the support of the prior distribution 

while confirming that the error is small: 
∫ ∫ ∫ 𝑗𝑜𝑖𝑛𝑡

1100

900

70

30

𝑑𝑎 𝑑𝑏 𝑑𝑐

14

6

≈ 0.0002406715 

adaptIntegrate( joint, lowerLimit = c(6, 30, 900), 

 upperLimit = c(14, 70, 1100) ) 

$integral 

[1] 0.0002406715 

$error 

[1] 2.398408e-09 

$functionEvaluations 

[1] 3729 

The proportionality constant is the reciprocal of this integral. Hence, the posterior probability 

density function 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) is computed as follows: 

post = function(p) { joint(p) / 0.0002406715 } 

Here is the posterior marginal density function for the 

random variable 𝐴. 

𝑓𝐴(𝑎) = ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏

1100

900

70

30

 

Inspect the accompanying graph to see how the sample 

𝑥 = 8 had a large effect on the prior distribution to 

create the posterior distribution. 

 
margA = function(x) { 

 cA = function(q) { post( c(x,q) ) } 

 adaptIntegrate(cA, lowerLimit = c(30, 900),  

  upperLimit = c(70, 1100))$integral 

} # marg A 

xa = seq( 6 , 8 , .01 ) 

ya = unlist(lapply( xa , margA )) # flatten list 

plot( ya ~ xa , type='l' , main='Marginal A' , xlim=c(6,14) ,  

 xlab='a' , ylab = 'pdf' ) 

curve(dtriang( x , min=6, mode=10, max=14 ) , add=T ,lty=2) 

legend( 'topright' , c('posterior','prior') , lty=1:2 ) 

Posterior marginal probability density function of the random variable 𝐵 is given by 



Academic Forum 36 (2018–19) 

 

40 

 

𝑓𝐵(𝑏) = ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑎

1100

900

14

6

 

margB = function(x) { 

 sl = function(q) { post( c(q[1],x,q[2]) ) } 

 adaptIntegrate( sl , lowerLimit = c(6, 900),  

  upperLimit = c(14, 1100))$integral 

} # marg B 

xb = seq( 30 , 70 , .1 ) 

system.time( { 

 yb = unlist(lapply( xb , margB )) 

} ) 

plot( yb ~ xb , type='l' , main='Marginal pdf B' , 

 xlab='b' , ylab = 'pdf' ) 

curve( dtriang( x , min=30, mode=50, max=70 ) , add=T , lty=2 ) 

legend('bottom' , c('posterior','prior') , lty=1:2 ) 

It took my computer 22.6 seconds to execute the R 

command lapply to make the probability density 

vector. The sample 𝑥 = 8 had small, but noticeable 

effect on the prior distribution to make the posterior. 

 
The posterior marginal density function of the random variable 𝐶 is  

𝑓𝐶(𝑐) = ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑏 𝑑𝑎

70

30

14

6

 

margC = function(x) { 

 sl = function(q) { post( c(q,x) ) } 

 adaptIntegrate(sl, lowerLimit = c(6, 30),  

  upperLimit = c(14, 70))$integral 

} # marg C 

xc = seq( 900 , 1100 , 5 ) 

yc = unlist(lapply( xc , margC )) # flatten list 

plot( yc ~ xc , type='l' , main='Marginal pdf C' , 

 xlab='c' , ylab = 'pdf' ) 

curve( dtriang( x , min=900, mode=1000, max=1100 ) , add=T , 

lty=2) 

legend('bottom' , c('posterior','original') , lty=1:2 ) 
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The sample 𝑥 = 8 had negligible effect on the prior 

distribution. 

 
Minimize 𝐸[(Θ − 𝜃𝑒𝑠𝑡)2|𝑋 = 8] to estimate the parameter 𝜃 using the square-loss function. The 

new minimum is the expected value of the marginal distribution 𝐴 computed using the posterior 

distribution. (The old value was 10.) 

𝑎𝑒𝑠𝑡 = 𝐸[𝐴|𝑥 = 8] = ∫ ∫ ∫ 𝑎 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

1100

900

70

30

14

6

≈ 7.27 

mi = function(p) { p[1] * post(p) } 

adaptIntegrate(mi, lowerLimit = c(6, 30, 900), 

 upperLimit = c(14, 70, 1100)) 

$integral 

[1] 7.269512 

$error 

[1] 6.980918e-05 

$functionEvaluations 

[1] 3795 

Similarly, here is the new mode. (The old value was 50.) 

𝑏𝑒𝑠𝑡 = 𝐸[𝐵|𝑥 = 8] = ∫ ∫ ∫ 𝑏 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

1100

900

70

30

14

6

≈ 48.5 

mo = function(p) { p[2] * post(p) } 

adaptIntegrate(mo, lowerLimit = c(6, 30, 900),  

 upperLimit = c(14, 70, 1100)) 

$integral 

[1] 48.46184 

$error 

[1] 0.0004537082 

$functionEvaluations 

[1] 3267 

As expected, the new maximum is the same as the old value of 1000 to four significant digits: 

𝑐𝑒𝑠𝑡 = 𝐸[𝐶|𝑥 = 8] = ∫ ∫ ∫ 𝑐 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

1100

900

70

30

14

6

≈ 1000 
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ma = function(p) { p[3] * post(p) } 

adaptIntegrate(ma, lowerLimit = c(6, 30, 900), 

 upperLimit = c(14, 70, 1100)) 

$integral 

[1] 999.6467 

$error 

[1] 0.009829518 

$functionEvaluations 

[1] 3465 

Minimize 𝐸[|Θ − 𝜃𝑒𝑠𝑡||𝑋 = 8] to estimate the parameter 𝜃 using the absolute-value loss 

function. This is computation is slightly more tedious. Here the absolute loss estimate for 𝑎: 

1

2
= 𝑃[𝐴 < M𝐴|𝑋=8] = ∫ ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

1100

900

70

30

𝑎𝑒𝑠𝑡

6

→ 𝑎𝑒𝑠𝑡 ≈ 7.33 

F.A = function(x){ 

adaptIntegrate( post , lowerLimit = c(6, 30, 900), 

 upperLimit = c(x, 70, 1100) )$integral - 0.5 } 

uniroot( F.A , interval = c(6,14) ) 

Here the absolute loss estimate for 𝑏: 

1

2
= 𝑃[𝐵 < M𝐵|𝑋=8] = ∫ ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

1100

900

𝑏𝑒𝑠𝑡

30

14

6

→ 𝑏𝑒𝑠𝑡 ≈ 48.4 

F.B = function(x){ 

adaptIntegrate( post , lowerLimit = c(6, 30, 900), 

 upperLimit = c(14 , x, 1100) )$integral - 0.5 } 

uniroot( F.B , interval = c(30,70) ) 

1

2
= 𝑃[𝐶 < M𝐶|𝑋=8] = ∫ ∫ ∫ 𝑘(𝑎, 𝑏, 𝑐|𝑥 = 8) 𝑑𝑐 𝑑𝑏 𝑑𝑎

𝑐𝑒𝑠𝑡

900

70

30

14

6

→ 𝑐𝑒𝑠𝑡 ≈ 1000 

F.C = function(x){ 

adaptIntegrate( post , lowerLimit = c(6, 30, 900), 

 upperLimit = c(14 , 70, x) )$integral - 0.5 } 

uniroot( F.C , interval = c(900,1100) ) 

Conclusion 

Recall that the prior parameters were (𝑎, 𝑏, 𝑐) = (10, 50,1000). The updated parameters using 

the square-loss function are (7.27,48.5,1000). It was slightly less convenient to compute the 

updated parameters using the absolute-value loss function, and it did not matter much: 

(7.33,48.4,1000). The sample of 𝑥 = 8 had the most effect on the minimum parameter and 

almost no effect on the maximum parameter. 
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