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week later he hit number 44 to become the franchise leader.  By the time he retired after the 

1916 season, he had 101 career home runs, including a Pittsburgh record of 82. 

Another future Hall of Famer, Paul Waner, succeeded Wagner.  Waner closed out 1931 one 

homer behind Wagner.  His first 1935 home run came on May 11 to tie Wagner before passing 

him two days later with number 83.  Waner ended the Pittsburgh portion of his career in 1940 

with 109 home runs.  While it took Waner 15 years to accumulate his total, his record was 

broken part way into his successor's third season.   

Ralph Kiner, another future Hall of Famer, was the most dominant power hitter in Pittsburgh 

history to this point.  In his rookie season of 1946, he hit 23 to tie the single-season team 

record.  His remaining six full seasons with Pittsburgh produced the six highest season home 

run totals in team history.  In late 1948, on August 26, he hit career home number 109 to tie 

Waner.  September 2nd he passed Waner.  Playing part way into 1953, Kiner finished his 

Pittsburgh career with 301 home runs, on his way to 369 homers in a career prematurely 

shortened by back trouble.  That gives him more than 46% of all the home runs ever hit by 

players born in New Mexico. 

Kiner's record held until 1973.  Willie Stargell, another Hall of Famer, hit a grand slam on July 

3, 1973, to tie Kiner.  On July 11, Stargell hit number 302 to take the franchise lead which he 

holds to this day.  When he retired in 1982, he had a total of 475 home runs, all with Pittsburgh. 

Conclusion 

These studies are the third installment of a series I hope to continue.  Baseball is unique among 

sports in the way that statistics play such a central role in the game and the fans' enjoyment 

thereof.  The importance of baseball statistics is evidenced by the existence of the Society for 

American Baseball Research, a scholarly society dedicated to studying baseball.     
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Bernoulli Numbers and Their Applications 

Lloyd Edgar S. Moyo 

Professor of Mathematics 

Abstract. Bernoulli numbers, named after a Swiss mathematician, Jakob Bernoulli (1654-

1705), crop up in various branches of mathematics such as number theory, topology, 

combinatorics, and analysis. In this article, we will give a recursive definition of Bernoulli 

numbers and look at some elementary applications of the numbers. 

1 Introduction 

There are several special numbers in Mathematics. The reader might have come across 

amicable numbers, Fibonacci numbers, harmonic numbers, Euler numbers, Lucas numbers, or 

Genocchi numbers. In this article, we are going to briefly look at special numbers called 

Bernoulli numbers and discuss some of its applications. 
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2 Recursive Definition of Bernoulli Numbers 

Consider the following function of a complex variable 𝑧: 𝑓(𝑧) = {
𝑧

𝑒𝑧−1
, for 𝑧 ≠ 0

1, for 𝑧 = 0
 

Solving the equation 𝑒𝑧 − 1 = 0 for 𝑧, we get 𝑧 = 2𝜋𝑖𝑘, where 𝑘 is any integer. Since 

lim
𝑧→0

𝑓(𝑧) = 1, we conclude that 𝑧 = 0 is a removable singularity of 𝑓. Hence, the function 𝑓 

has a Maclaurin series that is valid for |𝑧| < 2𝜋. We write 

(1) 𝑓(𝑧) = ∑
𝐵𝑘
𝑘!
𝑧𝑘

∞

𝑘=0

, 

where 𝐵𝑘 are constants to be determined. 

We recall that 

𝑒𝑧 = 1 + 𝑧 +
1

2!
𝑧2 +

1

3!
𝑧3 +

1

4!
𝑧4 +

1

5!
𝑧5 +⋯ 

is valid for |𝑧| < ∞. Therefore 

𝑒𝑧 − 1 = 𝑧 +
1

2!
𝑧2 +

1

3!
𝑧3 +

1

4!
𝑧4 +

1

5!
𝑧5 +⋯. 

 

The definition of the function 𝑓 implies (𝑒𝑧 − 1)𝑓(𝑧) = 𝑧 so use (1) to obtain 

𝑧 = (𝑧 +
1

2!
𝑧2 +

1

3!
𝑧3 +

1

4!
𝑧4 +

1

5!
𝑧5 +⋯)∑

𝐵𝑘
𝑘!
𝑧𝑘

∞

𝑘=0

, 

which, in expanded form, becomes 

𝑧 = (𝑧 +
1

2!
𝑧2 +

1

3!
𝑧3 +

1

4!
𝑧4 +

1

5!
𝑧5 +⋯) (𝐵0 + 𝐵1𝑧 +

𝐵2
2!
𝑧2 +

𝐵3
3!
𝑧3 +

𝐵4
4!
𝑧2 +

𝐵5
5!
𝑧5 +⋯). 

Equating the coefficients of the powers of 𝑧𝑛 on both sides of the above equation, we obtain the 

following for 𝑛 = 1, 2, 3, 4, 5, … , 𝑘: 

(2) 

{
 
 
 
 

 
 
 
 

𝐵0 = 1
1

2!
𝐵0 + 𝐵1 = 0

1

3!
𝐵0 +

1

2!
𝐵1 +

1

2!
𝐵2 = 0

1

4!
𝐵0 +

1

3!
𝐵1 +

1

2! 3!
𝐵2 +

𝐵3
3! 2!

+
𝐵4
4!
= 0

⋮
𝐵0

0! (𝑘 + 1)!
+

𝐵1
1! (𝑘!)

+ ⋯+
𝐵𝑘−1

(𝑘 − 1)! 2!
+
𝐵𝑘
𝑘!
= 0

 

From this, we readily obtain 𝐵0 = 1, 𝐵1 = −
1

2
, 𝐵2 =

1

6
, 𝐵3 = 0, 𝐵4 = −

1

30
, 𝐵5 = 0, etc.  

We claim that 𝐵2𝑘+1 = 0 for all 𝑘 ∈ ℕ = {1, 2, 3, … }. Here is how we prove our claim. Since 

𝐵0 = 1, 𝐵1 = −
1

2
, and 

𝑓(𝑧) = ∑
𝐵𝑘
𝑘!
𝑧𝑘

∞

𝑘=0

, |𝑧| < 2𝜋, 



Academic Forum 34 (2016–17) 

 

31 

 

we may write 

𝑧

𝑒𝑧 − 1
= 1 −

𝑧

2
+∑

𝐵𝑘
𝑘!
𝑧𝑘

∞

𝑘=2

, |𝑧| < 2𝜋. 

Since 

1 +∑
𝐵𝑘
𝑘!
𝑧𝑘

∞

𝑘=2

=
𝑧

𝑒𝑧 − 1
+
𝑧

2
 

=
𝑧

2
(

2

𝑒𝑧 − 1
+ 1) 

=
𝑧

2
(

2

𝑒𝑧 − 1
+
𝑒𝑧 − 1

𝑒𝑧 − 1
) 

=
𝑧

2
(
2 + 𝑒𝑧 − 1

𝑒𝑧 − 1
) 

=
𝑧

2
(
𝑒𝑧 + 1

𝑒𝑧 − 1
) 

=
𝑧

2
coth (

𝑧

2
), 

which is an even function of 𝑧, we conclude that 𝐵2𝑘+1 = 0, for all 𝑘 ∈ ℕ. This completes the 

proof of our claim. We observe that in the process of proving our claim, we have the following 

serendipity: 

(3) 
𝑧

2
coth (

𝑧

2
) = 1 +∑

𝐵2𝑘
(2𝑘)!

𝑧2𝑘
∞

𝑘=1

, which is valid for |𝑧| < 2𝜋 

The numbers 𝐵0, 𝐵1, 𝐵2, 𝐵4, 𝐵6, …, defined recursively in (2), are called Bernoulli numbers. 

Here is a table of the first 36 nonzero Bernoulli numbers (Hairer and Wanner [7], p. 161): 
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𝑘 𝐵𝑘 

0 1 

1 −1 2⁄  

2 1 6⁄  

4 −1 30⁄  

6 1 42⁄  

8 −1 30⁄  

10 5 66⁄  

12 −691 2730⁄  

14 7 6⁄  

16 −3617 510⁄  

18 43867 798⁄  

20 −174611 330⁄  

22 854513 138⁄  

24 −236364091 2730⁄  

26 8553103 6⁄  

28 −23749461029 870⁄  

30 8615841276005 14322⁄  

32 −7709321041217 510⁄  

34 2577687858367 6⁄  

36 −26315271553053477373 1919190⁄  

We have seen that if 

𝑓(𝑧) = {

𝑧

𝑒𝑧 − 1
, for 𝑧 ≠ 0

1, for 𝑧 = 0
, 

then 

𝑓(𝑧) =
𝑧

2
+∑

𝐵2𝑘
(2𝑘)!

𝑧2𝑘
∞

𝑘=1

, |𝑧| < 2𝜋 

where 𝐵2𝑘, 𝑘 = 0,1,2,3, … are Bernoulli numbers. 

3 Historical Computations of Bernoulli Numbers ([16]) 

According to Wikipedia [16], Jakob Bernoulli calculated 𝐵0 through 𝐵10. Lady Ada Lovelace 

(1815–1852) wrote a first computer program to calculate Bernoulli numbers for the Charles 

Babbage's analytical machine. Euler (1654–1705) calculated up to 𝐵30. In 1840, M. Ohm 

calculated up to 𝐵62. In 1877, J.C. Adams calculated up to 𝐵124 by using a certain theorem. In 

1967, D.E. Knuth and T.J. Buckholtz calculated 𝐵360. In 1996, S. Ploufe and G.J. Fee 

calculated 𝐵200,000. On July 10, 2002, S. Ploufe calculated 𝐵750,000. In December, 2002, B.C. 

Kellner calculated 𝐵1,000,000. In April, 2008, O. Pavlyk calculated 𝐵10,000,000. In October, 2008, 

D. Harvey calculated 𝐵100,000,000.  
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4 Some Elementary Applications of Bernoulli Numbers in Mathematics 

4.1 Bernoulli Summation Formula 

In this section, we will state the Bernoulli Summation Formula and then use it to find the exact 

sums of some important finite series. 

 

Theorem 1 (Bernoulli Summation Formula) Fix 𝑚 ∈ ℕ and for 𝑛 ∈ ℕ, let 

𝑆𝑚(𝑛) = 1 + 2𝑚 + 3𝑚 +⋯+ 𝑛𝑚. 
Then 

𝑆𝑚(𝑛) =
1

𝑚 + 1
𝑛𝑚+1 +

1

2
𝑛𝑚 +

𝑚𝐵2
2

𝑛𝑚−1 +
𝑚(𝑚 − 1)(𝑚 − 2)𝐵4

2 ⋅ 3 ⋅ 4
𝑛𝑚−3

+
𝑚(𝑚 − 1)(𝑚 − 2)(𝑚 − 3)(𝑚 − 4)𝐵4

2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6
𝑛𝑚−5 +⋯, 

where the series terminates at the last positive power of 𝑛. 

Proof. See Katz [8], p. 599. ∎ 

Bernoulli used this formula to find 

𝑆10(1000) = 91409924241424243424241924242500 (32 digits!). 

According to Dunham [3], p. 12), Bernoulli claimed that he found this 32-digit number “in less 

than half a quarter of an hour.” 

Let us use the Bernoulli Summation Formula to find the exact sums of some important finite 

series that are very useful in Calculus I. 

Example 1. Use Bernoulli Summation Formula to show that 

(4) 1 + 2 + 3 +⋯𝑛 =
1

2
𝑛(𝑛 + 1). 

Solution. Setting 𝑚 = 1 in the Bernoulli Summation Formula, we have 

𝑆1(𝑛) =
1

(1 + 1)
𝑛1+1 +

1

2
𝑛1 =

1

2
𝑛2 +

1

2
𝑛 =

1

2
𝑛(𝑛 + 1). 

Therefore 

1 + 2 + 3 +⋯𝑛 =
1

2
𝑛(𝑛 + 1), 

as we wished to show. Of course, the easiest way to prove (4) is to use a technique used by Carl 

Friedrich Gauss (1777–1855) to find the sum of the first 100 natural numbers when he was only 

7-years old, and he managed to find the correct answer in less than a minute. 

Example 2. Use the Bernoulli Summation Formula to show that 

12 + 22 + 32 +⋯𝑛2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 

Solution. Setting 𝑚 = 2 in the Bernoulli Summation Formula, we have 

𝑆2(𝑛) =
1

2 + 1
𝑛2+1 +

1

2
𝑛2 +

2𝐵2
2
𝑛2−1 

=
1

3
𝑛3 +

1

2
𝑛2 + 𝐵2𝑛 
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=
1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 

Therefore 

12 + 22 + 32 +⋯𝑛2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1), 

as we wished to show. 

Similarly, it can be shown that 

13 + 23 + 33 +⋯𝑛3 = [
𝑛(𝑛 + 1)

2
]

2

 

and 

14 + 24 + 34 +⋯𝑛4 =
1

30
𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛2 + 3𝑛 − 1). 

4.2 Maclaurin Series of Certain Functions in Terms of Bernoulli Numbers 

In this section, we find the Maclaurin series of certain functions in terms of Bernoulli numbers. 

Example 1. Show that 

𝑧 cot(𝑧) =1 +∑(−1)𝑘
22𝑘𝐵2𝑘
(2𝑘)!

𝑧2𝑘
∞

𝑘=1

, |𝑧| < 𝜋. 

Solution. From (3), we know that 

(5) 𝑧

2
coth (

𝑧

2
) = 1 +∑

𝐵2𝑘
(2𝑘)!

𝑧2𝑘
∞

𝑘=1

, for |𝑧| < 2𝜋. 

Replacing 𝑧 with 2𝑖𝑧 in (5) and using the identity 

coth(𝑖𝑧) = −𝑖 cot 𝑧, 
we obtain 

(6) 𝑧 cot(𝑧) = 1 +∑(−1)𝑘
22𝑘𝐵2𝑘
(2𝑘)!

𝑧2𝑘
∞

𝑘=1

, valid for |𝑧| < 𝜋. 

This is precisely what we wished to show. 

Example 2. Show that 

tan(𝑧) = ∑(−1)𝑘
22𝑘(1 − 22𝑘)𝐵2𝑘

(2𝑘)!
𝑧2𝑘−1

∞

𝑘=1

, |𝑧| <
𝜋

2
. 

Solution. It is left as an exercise for the reader to use (6) and the trigonometric identity 

tan 𝑧 = cot 𝑧 − 2 cot 2𝑧 
to obtain 

tan(𝑧) = ∑(−1)𝑘
22𝑘(1 − 22𝑘)𝐵2𝑘

(2𝑘)!
𝑧2𝑘−1

∞

𝑘=1

, |𝑧| <
𝜋

2
. 

4.3 Relationship with the Riemann Zeta Function 𝜻(𝒛) = ∑ 𝟏/𝒌𝟐∞
𝒌=𝟏 , Re(𝒛) > 𝟏 

In this section, we state a result that gives a relationship between Bernoulli numbers and the 

Riemann zeta function. 
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Theorem 2. If 𝑛 is a natural number, then 

∑
1

𝑘2𝑛

∞

𝑘=1

=
(−1)𝑛−122𝑛−1𝐵2𝑛

(2𝑛)!
𝜋2𝑛. 

Proof. For an elegant proof, see, for example, Simmons [13], p. 302. ∎ 

Example 

Value of 𝒏 Sum of the infinite series ∑
𝟏

𝒌𝟐𝒏
∞
𝒌=𝟏  

1 𝜋2 6⁄  

2 𝜋4 90⁄  

3 𝜋6 945⁄  

4 𝜋8 9450⁄  

5 𝜋10 93555⁄  

6 𝜋12 638512875⁄  

Remark. We need another Euler to evaluate 

∑
1

𝑘2𝑛+1

∞

𝑘=1

, 

where 𝑛 ∈ ℕ. 

5 Conclusion 

Although we have only looked at three applications of the Bernoulli numbers in this article, 

there are many applications of Bernoulli numbers in various branches of mathematics such as 

number theory, topology, combinatorics, and analysis. 

References 

[1] Asmar, N.H., Applied Complex Analysis with Partial Differential Equations, Prentice-

Hall, Inc., Upper Saddle River, NJ, 2002. 

[2] Boyer, C.B., A History of Mathematics, John Wiley & Sons, Inc., New York, 1968. 

[3] Dunham, W., The Mathematical Universe, John Wiley and Sons, New York, 1994. 

[4] Dunham, W., The Calculus Gallery: Masterpieces from Newton to Lebesgue, Princeton 

University Press, 2005. 

[5] Freund, J.F., Statistics: A First Course, 3rd ed., Prentice-Hall, Inc., Englecliffs, NJ, 1981. 

[6] Gillispie, C.C., ed., Dictionary of Scientific Biography, Vol. 2, Scribner's, New York, 

1970. 

[7] Hairer, E. and Wanner, G., Analysis by Its History, Springer-Verlag, New York, 1996. 

[8] Katz, V.J., A History of Mathematics: An Introduction, 2nd ed., Addison-Wesley, 

Reading, MA, 1998. 

[9] Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University 

Press, New York, 1972. 

[10] Markushevich, A.I., Theory of Functions of a Complex Variable, Vols. 1 & 2, Prentice-

Hall, Inc., Englecliffs, NJ, 1965. 

[11] Sandifer, C.E., How Euler Did It, MAA, Washington, DC, 2007. 

[12] Scott, J.F., A History of Mathematics: From Antiquity to the Beginning of the Nineteenth 

Century, Taylor & Francis Ltd, London, 1969. 



Academic Forum 34 (2016–17) 

 

36 

 

[13] Simmons, G.F., Calculus Germs: Brief Lives and Memorable Mathematics, MAA, 

Washington, DC, 2007. 

[14] http://www.britannica.com/EBchecked/topic/65749/binomial-theorem. 

[15] http://en.wikipedia.org/wiki/Polar_coordinate_system. 

[16] http://en.wikipedia.org/wiki/Bernoulli_number. 

Biographical Sketch 

Lloyd Moyo received his B.Ed. (Science) in 1992 from the University of Malawi in Southern 

Africa. He received his M.Sc. in Mathematics from the University of Sussex, U.K. in 1996 and 

his Ph.D. in Mathematics from New Mexico State University in 2006. He joined Henderson 

State University in fall 2012. He is a member of the American Mathematical Society, the 

Mathematical Association of America, Arkansas Academy of Science, and the International 

Mathematical Union. 

Library Funding at Colleges and Universities in the United States 

David Sesser 

Collections Librarian 

In an era of flat or reduced budgets, libraries at institutions of higher education across 

the country struggle to continue to offer a quality level of service to their patrons while the 

prices of materials continue to increase. To meet the needs of students, faculty, researchers, and 

other stakeholders, libraries are finding creative solutions to access the materials that are 

critical to colleges and universities. This paper examines the ways that libraries are trying to 

solve this funding problem and how they respond to budget cuts. 

Library Funding at Colleges and Universities in the United States 

With increasing prices for electronic materials required by faculty and students, college 

and university libraries around the world are struggling to meet these growing demands. Using 

a critical eye on current holdings and exploring ways to save money when purchasing new 

materials, these libraries can continue to offer these necessary resources.    

Literature Review 

The study of budget cuts on libraries at an institution of higher education is limited. 

Often it is included as an aside in stories that focus on other cuts at institutions. Other 

publications focus on the impact of cuts at public libraries rather than academic institutions. 

One such article is Kelly (2011), where the author laments the status of library budgets, writing 

“examining Library Journal’s annual budget survey is like scanning a battlefield: there are 

bodies everywhere, the smoke and dust are blinding.”  

Some of the best resources on the status of library funding come from the American 

Library Association’s State of America’s Libraries (2011). Other publications include Lyall and 

Sell’s (2006) impact of cuts to public higher education and in particular the impact it has had 

on libraries.  

With such a wide variety of topics that are directly related to academic library finance, 

it is difficult for one publication to cover all aspects of the subject. Thus a single reference has 

not yet been published that does that.   

  


