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2-Sample t-Distribution Approximation 

Michael Lloyd, Ph.D. 

Professor of Mathematics 

Abstract 

The t-distribution used for the 2-sample procedures introduced in elementary statistics is 

actually an approximation introduced by Welch and Satterthwaite in the late 1940s. We will 

explore how the error of this approximation depends on the sample sizes and the variances of 

the independent populations. 

Motivation 

We will examine the following example, which was extracted from a PowerPoint slide that 

accompanies a popular elementary statistics book: 

Does smoking damage the lungs of children exposed to parental smoking? Forced Vital 

Capacity (FVC) is the volume (in millimeters) of air that an individual can exhale in 

6 seconds. FVC was obtained for two samples of children, one group exposed to parental 

smoking, and another group of children not exposed to parental smoking. 
 

Parental smoking �̅ FVC � FVC � 

Yes 75.5 9.3 30 

No 88.2 15.1 30 

We want to know if parental smoking 

decreases children’s lung capacity as 

measured by the FVC test. 

The following must be checked, or assumed, for the test statistic to have approximately a t-

distribution: 
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1. The children from the smoking group, and the non-smoking group, are both simple 

random samples. 

2. The FVC is Normally distributed for the smoking group, and for the non-smoking group. 

3. The sample sizes for the smoking group, and the non-smoking group, are each 30, which 

is greater than 5. 

4. The FVC responses for children in the smoking group are independent of those in the 

non-smoking group. 

The t statistic is computed as follows: � = �̅�	�̅

���
����

�


= ��.�	��.�
��.�
�� ���.�
��

= −3.9 

Degrees of Freedom for the t test Statistic 

There are three ways to compute the degrees of freedom for a 2-sample t procedure.  

1. Assuming that the population standard deviations for the smoking and nonsmoking groups 

are the same gives the largest degrees of freedom, �� = � + �" − 2 = 58. For this example, 

it does not appear that the population standard deviations are the same since the sample 

standard deviations substantially differ. The hypotheses test for testing that the standard 

deviations are the same is not robust, so this method, called pooling, should not be done in 

practice. This will give the smallest margin of error, and the smallest p-value of the three 

methods for estimating the degrees of freedom. 

2. The conservative estimate gives the smallest degrees of freedom, namely �� =min)� − 1, �" − 1, = 29. This simple method will give the largest margin of error, or the 

largest p-value of the three methods for estimating the p-value. 

3. The Welch-Satterwaithe approximation, which is commonly used in introductory statistics 

courses, is between these extremes and uses the following degrees of freedom: 

�� = -� �� + �"��".
�

1� − 1-� �� .
� + 1�" − 1-�"��".

� 

Applying this formula to the above example, gives �� = -�.�
�� ���.�
�� .

�
�-�.�
�� .
� �
�-��.�
�� .
 = 48.2. The p-value 

is 01� ≥ −3.93 ≈ 0.0001. Students may not be aware that they are using this formula if they 

use software to compute the test statistics. Because the p-value is very small, we have strong 

evidence that the average lung capacity is impaired in children of adults who smoke. 

Explanation of the degrees of freedom formula 

We will assume throughout the rest of the paper that 6 and 7 are independent, Normally 

distributed random variables.  Also assume that the sample sizes from 6 and 7 are 8 and �, 
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respectively. The random variable 9 = ):;	 ;,	)<=	<�,
�>=
?�>�
@

 is actually only approximated by the t-

distribution with degrees of freedom of given by �� = A�=
B���
@ C



�BD�A�=
BC
� �@D�A��
@ C

.  

For example, assume E:;� = 2E ;� and 8 = � = 6. Then, 9 should have approximately the t-

distribution with 
A
G�H
I �G�
I C




�JA
G�H


I C
��JAG�
I C


 = 9 degrees of freedom. Although the exact distribution of 9 is 

unknown, it can be simulated because of the following:  

1. The numerator and denominator of 9 are independent.  

2. The numerator of 9 has a Normal distribution with mean 0 and variance 
K=
L + K�
M = �K�H
N +

K�
N = O�E �.  

3. The variances in its denominator are multiples of the chi-squared distribution. Specifically, 

P:� = K=
� Q = �K�H
� Q, where Q has the chi-squared distribution with 5 degrees of freedom. 

Also, P � = K�
� R, where R has the chi-squared distribution with 5 degrees of freedom, and is 

independent of Q. 

The accompanying figure shows an empirical 

histogram for 9 using 2999 simulations. The 

theoretical t-distribution with 9 degrees of freedom 

appears to approximate the empirical distribution 

of 9 well. 

 

Derivation of the degrees of freedom formula 

We will reproduce a derivation of the Welch-Satterwaithe approximation that appears in many 

advanced statistics texts. Let S = 6; − 7;. By independence, ET� = E:;� + E ;� = K=
U + K�
M . The 

random variable 9 can be rewritten as 
V

�W XY , where Z = ):;	 ;,	)<=	<�,K[ , \ = XA>=
?�>�
@ C
K[
 , and ] is 

any positive number. The random variable Z will have the standard Normal distribution, and Z 

and \	are independent. The constant ] will be chosen so that \ will have approximately the 

chi-squared distribution with ] degrees of freedom using the method of moments. Let _ 

actually have a chi-squared distribution with r degrees of freedom. Then, 9 will be 
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approximated by 
V

�` XY , which has the t-distribution with ] degrees of freedom. This method is 

analogous to approximating a function by its Taylor polynomial by making some of its 

derivatives agree at a fixed point. Here, we will make the maximal number of moments of \ 

and _ agree by judiciously choosing ]. The first moments are the same, namely a1\3 =XK[
 bK=
U + K�
M c = ] and a1_3 = ]. We will choose ] so that the second moments are the same. 

That is, a1\�3 = a1_�3, or equivalently, Var)\, = Var)_,.   By independence, Var)\, =X
K[� bghijk=
lU
 + ghijk�
lM
 c. The random variable 
)L	O,k=
K=
  has the chi-squared distribution with 8 −

1 degrees of freedom. So, 
)L	O,
ghijk=
lK=� = 2)8 − 1,, which implies Var)P:�, = �K=�L	O. Similarly, 

Var)P �, = �K��m	O. Thus, Var)\, = X
K[� b �K=�U
)L	O,+ �K��M
)m	O,c. The variance of _ is simply Var)_, = 2]. Solve the equation Var)\, = Var)_, for ] to get the Welch-Satterthwaite 

approximation for the degrees of freedom: 

�� = -E:�m + E �n .
�

18 − 1-E:�m.� + 1n − 1 -E �n .
� 

In practice, the population standard deviations are approximated using the sample standard 

deviations. This idea can be used to approximate any linear combination of independent chi-

squared random variables with a single chi-squared random variable. 

We will show that the third moments of \ and _ disagree. 

a1\n3 = ]nETN a oP:
N8n + 3P:pP �8�� + 3P:�P p8�� + P N�nq

= ]nETN a o \:NE:N8n)8 − 1,n + 3\:p\ �E:pE �8��)8 − 1,�)� − 1, + 3\:�\ pE:�E p8��)8 − 1,)� − 1,� + \ NE N�n)� − 1,nq
= ]nETN a o)8 + 3,)8 + 1,E:N8n)8 − 1,n + 3)8 + 1,E:pE �8��)8 − 1, + 3)� + 1,E:�E p8��)� − 1, + )� + 3,)� + 1,E N�n)� − 1,n q

 

and 

a1_n3 = 2nΓ)3 + X �Y ,Γ)X �Y , = 8)2 + X �Y ,)1 + X �Y ,X �Y = )] + 4,)] + 2,] 

Assume that E: = E . The following was obtained using a computer algebra system: a1\n3 − a1_n3
= 88)8 − 1,)8 + �,��)� − 1,18p − 28n − 28��� + 28�� + 8� + 28�� − 28� + �p − 2�n + ��3)8n −8� + �n − ��,n  

This last expression is zero if  8 = �. If 8 ≠ �, then it is almost never zero by the 

Fundamental Theorem of Algebra. 
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The range of the Satterthwaite approximation df 

We will show that the Satterthwaite approximation for the degrees of freedom lies between the 

conservative and pooling estimates. A computer algebra system was used to show the 

following: 

)8 + � − 2, − ] = 1E:��)� − 1, − E �8)8 − 1,3�E:p��)� − 1, + E p8�)8 − 1,  

The right side is nonnegative, so ] t 8 + � − 2, the pooling estimate for ]. In fact, ] = 8 +� − 2 if and only if  
K�
K=
 = m)m	O,L)L	O,. Note that the larger variance corresponds to the larger 

sample size. 

We will now show that the lower bound for ] is the conservative estimate. Without loss of 

generality, assume that � t 8. A computer algebra system was used to show the following: 

] − )� − 1, = E:�1E:�)8 − �,� + 2E �8)8 − 1,3�)� − 1,E:p��)� − 1, + E p8�)8 − 1,  

The right side is positive, so ] u � − 1. Since � t 8, ] u min)8 − 1, � − 1,. Since the 

numerator on the right side of the expression for ] − )� − 1, is a quadratic in 8 and the 

denominator is cubic in 8, ] − )� − 1, will converge to zero as 8 → ∞ if all the other 

variables are fixed. Therefore the range of ] is precisely min)8 − 1, � − 1, x ] t 8 + � − 2. 

Using the sample variances in practice 

Recall that we actually approximate the population variances with the sample variances in the 

Satterthwaite approximation for the degrees of freedom. 

Assume that P� is computed using � 

independent, identically distributed random 

variables with E� = 1. Since Varjy�)� −1,l = 2)� − 1,, it will follow that Var)P�, = �m	O. The standard deviation of P� versus � is shown in the accompanying 

graph. The condition that 8 ≥ 6 and � ≥6 is plausible because 6 is the minimal � 

where the standard deviation of P� is less 

than half its maximal value at � = 2.  
 

Satterthwaite error dependence on sample sizes 

First, we will look at the special case where E: = E  and 8 = �. In this case, the Welch-

Satterthwaite value for ] is 
p m
Y
�D�∙ ��
 = 2� − 2. This is the same value for the degrees of freedom 

as that obtained by pooling the samples. There is no error in this case since \ = �m	�K[
 ∙
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{k=
L + k�
M | = 
�∙})m	O,k=
�)m	O,k�
~G=
@ �G�
@
 actually has the chi-squared distribution with 2)� − 1, degrees 

of freedom. That is, 9 will have exactly the t-distribution with 2� − 2 degrees of freedom. 

The 2½ percentile for 9 was simulated and 

computed using the Satterthwaite 

approximation using 2 t 8 t 11, 2 t � t11, and 
K�
K=
 ∈ �O� , Op , On , O� , 1, 2, 3, 4, 5�. The 

error computed by subtracting these two 

approximations is shown in the 

accompanying figure when the sample sizes 

are the same. This percentile was chosen 

because it is needed when computing a 95 

percent confidence interval. 
 

The interquartile ranges are likely fairly constant for � ≥ 4 because a simulation was used. The 

errors for � = 3 are significantly higher than those for � = 4 based on a Mann-Whitney test 

(� = 0.03). Also, the simulated percentile is usually larger than the Satterthwaite 

approximation, particularly for � = 2 or � = 3. This suggests that the Satterthwaite 

approximation will tend to give a smaller margin of error than the actual distribution of 9 

would if 8 and � are small. The following boxplots are for the same error difference. Group 0 

is when the sample sizes condition is not satisfied (8 t 5 or � t 5), and Group 1 is when the 

sample sizes condition is satisfied (6 t 8 t 11 and 6 t � t 11). The second graph shows 

more detail for the Group 1 boxplot. 

  

Group 0 had many large outliers and was skewed right, while Group 1 had only a few outliers 

and was symmetric. A nonparametric 95 percent confidence interval for the median of the 

Group 0 differences based on binomial distribution is )0.106,0.155,. Hence, we have evidence 

that the Satterthwaite approximate percentile tends to be too small when the conditions are not 

satisfied. The nonparametric confidence interval for the median of the Group 1 differences is )0.001,0.019,. Since this interval consists of all positive numbers, the errors also tend tobiased 
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when the conditions are satisfied. However, ninety-five percent of the Group 1 differences are 

between -0.115 and 0.140, which is reasonable for an approximation. 

Satterthwaite error dependence on 

variances  

The accompanying plot shows the error in 

using the Satterthwaite approximation versus 

the variance ratio 
K�
K=
 . The samples sizes are � = 11 while 8 = 4 (circle), 8 = 5 

(square), and 8 = 6 (triangle). It is not 

surprising that the error tends to be less for 

larger 8.  Also, the error tends to decrease as 

the variance ratio increases if 8 x 6.   

 

The linear relationship is stronger if the 

variance ratio is transformed using a 

logarithm. However, a nested F test did not 

show that the slopes were collectively 

significantly different in predicting the error 

(� = 0.59, �� = )2,21,, � = 0.58). 

 

Conclusions 

The Satterthwaite approximate can be very inaccurate if the sample size condition is not 

satisfied, especially in the direction of underestimating the margin of error. If the sample size 

condition is satisfied, then the absolute error in the 2½ percentile is likely less than 0.14. The 

sample size condition is also needed so that the population standard deviations can be 

reasonably approximated by the sample standard deviations. Although it was not significant for 

our small number of simulations, the error appeared to be less if the larger sample size 

corresponded to the larger variance. 
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Abstract 
 

When I was in first grade, I came home one day and explained to my mother how frustrated I 

was.  They had not yet taught us how to do long division.  That really bothered me because I 

wanted to be able to calculate batting averages for baseball players.  So my mother taught me 

long division.  Baseball is the ideal sport for people like me since statistics are far more a part 

of baseball than they are in any other sport.  This paper is simply a list of some of the baseball 

statistical oddities I have found amusing over the years. 

 

 

Players with at least 40 Home Runs but fewer than 100 Runs Batted In 

Player Year Team HR RBI 

Duke Snider 1957 Dodgers 40 92 

Mickey Mantle 1958 Yankees 42 97 

Mickey Mantle 1960 Yankees 40 94 

Harmon Killebrew 1963 Twins 45 96 

Hank Aaron 1969 Braves 44 97 

Rico Petrocelli 1969 Red Sox 40 97 

Hank Aaron 1973 Braves 40 96 

Davey Johnson 1973 Braves 43 99 

Darrell Evans 1985 Tigers 40 94 

Matt Williams 1994 Giants 43 96 

Ken Griffey Jr. 1994 Mariners 40 90 

Barry Bonds 2003 Giants 45 90 


