
Academic Forum 27 2009-10

57

Polynomial Solver Algorithm for the TI Graphing Calculators

Michael Lloyd, Ph.D.

Professor of Mathematics

Abstract

The history of polynomial solvers for the TI calculators (TI-85 through the TI-nspire), and an

explanation of a QR-based polynomial solver algorithm is explained.

TIs with Built-In Polynomial Solvers

The TI-83+ appeared in 1999, and the original TI-83+ polynomial application appeared in

2001. This application also runs on a TI-84+ and the screen shots for a newer version of this

software as used to find the zeros of are shown here:

TI-84+ Silver Edition

The TI-85 and TI-86 appeared in 1992 and 1997, respectively,

and both of these calculators are officially discontinued. The

screen shots shown here are from its built-in polynomial

solver menu used to solve the above polynomial. Note that

complex numbers on the TI-85 and TI-86 are displayed as

ordered pairs.

TI-86

Academic Forum 27 2009-10

58

The 89 appeared in 1998 and although it was a computer-

algebra system (CAS), a polynomial application for it

appeared in 2001, the same year the polynomial application

was released for the TI-83+.

TI-89 Titanium

The TI non-CAS and CAS nspires appeared in 2007, and the touch pad nspires appeared in

2010. The screen shot here shows finding the zeros using a CAS nspire.

TI-Touch Pad Nspire

Academic Forum 27 2009-10

59

Basic Polynomial Solver Programs

The TI-83 appeared in 1996 and the first version of the polynomial solver program was written

for TI-83 and TI-82 by the author the same year. This program hangs indefinitely if any two

pairs of complex zeros have similar moduli. For example, the above polynomial has two such

pairs of complex zeros causing the program to run indefinitely without successfully finding all

the zeros.

Here are the two zeros with

similar moduli that foiled the

program.

The program runs successfully

for the polynomial

because the two pair of

complex zeros have

sufficiently different moduli:

TI-83

Each row in the output matrix

gives a complex zero.

The following table gives a timeline for the TI graphing calculators and the various polynomial

solvers.

A = flash application, B = basic program or function, C = built-in command

Year 90 91 92 93 94 95 96 97 98 99 00 01

TI 81 85 82 80,92 83 86 73,89 92+,83+ 83+SE

solver C C B-82,83 C C C A83+,89

Year 02 03 04 05 06 07 08 09 10

Academic Forum 27 2009-10

60

TI V200 84+,89T nspires Nspire touch

solver C C-89T C-nspire B-nspire

Basic Polynomial Method using Eigenvalues

The non-CAS TI-nspire does not have a polynomial command, but it does have a built-in

command for finding all the eigenvalues of a matrix. This suggests the following method:

1. Divide the polynomial by its leading coefficient.

2. Create an upper Hessenburg matrix whose eigenvalues are the same as the zeros of the

polynomial.

3. Use the eigenvalue command.

Recall that a Hessenburg matrix is almost triangular.

Specifically, an upper Hessenburg matrix has zeros below

the subdiagonal. The polynomial

nn

nnn axaxaxaxp  



1

2

2

1

1  has the same

eigenvalues as the upper-Hessenburg matrix A shown here.
nn

naaaa

A


























0100

0

0010

0001

321











To prove this equivalence, use the definition of the characteristic polynomial and expand along

the first column:

 

)1()1(

432

)1()1(

1

321

100

0

10

001

100

0

10

001

000

100

0

10

001

































nn

n

nn

nn

n

n

x

x

x

aaaa

x

x

x

x

ax

x

x

x

aaaax

AxI































Academic Forum 27 2009-10

61

 

paxaxaxaxax

x

aa

x

x
axaxax

x

x

x

aaaa

x

x

x

x

axaxax

x

x

x

aaaa

x

x

x

x

axax

nnn

nnn

nn

n

nnn

nn

n

nn

nnn

nn

n

nn

n

































































1

2

2

2

2

1

1

1

2

2

2

1

1

)3()3(

543

)3()3(

3

2

2

1

1

)2()2(

543

)2()2(

2

1

1

11

0

100

0

10

001

100

0

10

001

000

100

0

10

001

100

0

10

001

000













































Detailed Polynomial Solver Method based on a QR-Algorithm

Our algorithm will depend upon the Real Schur Decomposition of a square real matrix:

• If A is a real nn matrix, there exists an orthogonal matrix Q such that Q
T
AQ = R is

quasi-upper triangular.

• A quasi-upper triangular matrix is an upper-Hessenburg matrix whose eigenvalues can

be obtained from the 11 and 22 blocks along its diagonal.

This is analogous to the factorization of a real polynomial into linear and irreducible quadratic

factors.

A Given’s Matrix is defined to be an nn matrix G =

J(I,j,θ) where 1 ≤ I < j ≤ n

• gkk = 1 if i k and jk

• gii = gjj = cos θ

• gij = sin θ

• gji = - sin θ

• gkl = 0, otherwise

• Given’s matrices are orthogonal.

• They are basically an identity matrices

embedded with a rotation in the i-j plane.

























1000

0cos0sin0

010

0sin0cos0

0001











Academic Forum 27 2009-10

62

The following simplified Q-R

Algorithm was used, but the

deflation was actually done in

the lower right corner in the TI-

83 and TI-82 programs.

1. Start with upper-Hessenburg matrix H.

2. Set all subdiagonals to zero that satisfy

|hi,i-1|≤ε(|hii| + |hi-1,i-1|).

3. Apply Hessenburg Q-R step.

a) Obtain R = QH using Given’s matrices.

b) Replace H with RQ
T
.

4. Deflate (break H apart where 0 appears in lower

diagonal).

5. Stop when H is 11 or 22.

Here is the Q-R Part of TI-83 program:

Create Given’s Matrices QH Step RQ
T
 Step

For(K,1,N-1)

[A](K,K)\->\A

[A](K+1,K)\->\B

If B=0

Then

1\->\C:0\->\S

Else

If abs(B)\>=\abs(A)

Then

A/B\->\T

1/\root\(1+T\^2\)\->\S

ST\->\C

Else

B/A\->\T

1/\root\(1+T\^2\)\->\C

CT\->\S

End:End

C\->\\L\TEMPC(K)

S\->\\L\TEMPS(K)

For(J,K,N)

C[A](K,J)+S[A](K+1,J)\->\A

C[A](K+1,J)-S[A](K,J)\->\B

A\->\[A](K,J)

B\->\[A](K+1,J)

End:End

For(K,1,N-1)

\L\TEMPC(K)\->\C

\L\TEMPS(K)\->\S

For(I,1,K+1)

C[A](I,K)+S[A](I,K+1)\->\A

C[A](I,K+1)-S[A](I,K)\->\B

A\->\[A](I,K)

B\->\[A](I,K+1)

End:End

The TI-82 and TI-83 programs use a crude upperbound for the moduli of all the polynomial

zeros that the author found in a precalculus text:

Academic Forum 27 2009-10

63

.z then , of zeroany is If

 .1/max and

 Let

1

0

01

1

1

Mpz

bbM

bxbxbxbp

nk

n

k

n

n

n

n













 

.1 that assumemay weSo,

 .clearly then ,1 If :Proof





z

Mzz

1

11

1

0

.maxLet

1

1

0

01

1

1

1

0

































Mz

z
b

N
zz

z

z
N

z

z
Nzbzb

bzbzbzb

bN

n

n

nn

nn
n

k

k

k

n

n

n

n

n

n

k

n

k



The zeros approximated by the eigenvalues of the upper Hessenburg matrix were actually used

as a starting point for a modified Newton’s method as described below:

• This will converge quadratically even if the multiplicity of a

zero is more than one.

• If p is a polynomial, substitute f=p/p’ in Newton’s method to

obtain the following iterative formula:
  '''

'

'

21

1

ppp

pp
xx

f

f
xx

nn

nn










Recall that a sequence xn is said to converge quadratically to c if there

exists a positive, real constant K such that
K

cx

cx

n

n

n







2

1
limsup

Here is the algorithm used to for the TI-82/83 programs:

1. Check if polynomial is linear, quadratic, or

 x
n
-k=0. If yes, solve and stop. If not, continue to Step 2.

2. Create upper Hessenburg matrix.

3. Compute tolerance based on maximum possible zero.

4. Perform QR iteration until tolerance is met.

5. Break off 11 or 22 block.

6. Find approximate eigenvalue.

7. Find accurate eigenvalue using a modified Newton’s method.

8. Perform synthetic division and replace polynomial with quotient to reduce its degree by

1 or 2.

9. Go to step 1.

References

• http://www.ticalc.org/basics/calculators/

• Graduate Numerical analysis notes (fall 1986)

http://www.ticalc.org/basics/calculators/

Academic Forum 27 2009-10

64

Biographical Sketch

Michael Lloyd received his B.S in Chemical Engineering in 1984 and accepted a position at

Henderson State University in 1993 shortly after earning his Ph.D. in Mathematics from

Kansas State University. He has presented papers at meetings of the Academy of Economics

and Finance, the American Mathematical Society, the Arkansas Conference on Teaching, the

Mathematical Association of America, and the Southwest Arkansas Council of Teachers of

Mathematics. He has also been an AP statistics consultant since 2002.

The Dictionary as Southern Cocktail: A Conversation with Roy Blount Jr.

Michael Ray Taylor, M.F.A.

Professor of Mass Media Communication

Abstract

An interview conducted via email with Southern writer and public radio

humorist Roy Blount Jr.

Roy Blount Jr. is one of those rare writers whose actual voice has become almost as familiar as

his literary one. Most weekends, you can hear his signature blend of Georgia drawl and rapid-

fire wit on the NPR news quiz “Wait, Wait, Don’t Tell Me.” He periodically recites comical

poetry and inflicts musical screeching (as founder of the fictional “Society for the Singing

Impaired”) on Garrison Keillor’s “A Prairie Home Companion.” The Vanderbilt graduate has

performed a successful off-Broadway one-man-show, appeared on several network TV shows,

and stays busy on the college lecture circuit.

Despite all this talking, Blount has somehow managed to sit down and write 21 books, in a

literary voice that, as Michael Dirda recently wrote in the Washington Post, “neatly balances

real learning with easy-loping charm.” His penchant for pithy puns, political petards and

periodic alliterative passages produces sentences that pull chuckles from readers; he piles these

into paragraphs and punch lines that can make them positively puncture a gut. With such a

facility for wordplay, it is no wonder that one of Blount’s many side gigs is serving as a usage

adviser to The American Heritage Dictionary. Evidently unsatisfied with merely providing

guidance to the dictionary, he has now written one of his own, Alphabet Juice: The Energies,

Gists, and Spirits of Letters, Words, and Combinations Thereof; Their Roots, Bones, Innards,

Piths, Pips, and Secret Parts, ... With Examples of Their Usage Foul and Savory, recently

released in paper by Farrar, Strauss and Giroux. The book explores the provenance of an

eclectic variety of words in short, invariably funny essays that average about a page or two

long.

Writing for Chapter 16, an online publication of Humanities Tennessee, Michael Ray Taylor

managed to catch up with Blount between radio appearances and deadlines for a conversation

on the book, the South and the state of American letters.

