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Polynomial Solver Algorithm for the TI Graphing Calculators 
 

Michael Lloyd, Ph.D. 

Professor of Mathematics 

 

Abstract 

 

The history of polynomial solvers for the TI calculators (TI-85 through the TI-nspire), and an 

explanation of a QR-based polynomial solver algorithm is explained. 

 

TIs with Built-In Polynomial Solvers 

 

The TI-83+ appeared in 1999, and the original TI-83+ polynomial application appeared in 

2001. This application also runs on a TI-84+ and the screen shots for a newer version of this 

software as used to find the zeros of                  are shown here: 

 

TI-84+ Silver Edition 

  

 

  
 

 

The TI-85 and TI-86 appeared in 1992 and 1997, respectively, 

and both of these calculators are officially discontinued. The 

screen shots shown here are from its built-in polynomial 

solver menu used to solve the above polynomial. Note that 

complex numbers on the TI-85 and TI-86 are displayed as 

ordered pairs. 

 

  
TI-86 
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The 89 appeared in 1998 and although it was a computer-

algebra system (CAS), a polynomial application for it 

appeared in 2001, the same year the polynomial application 

was released for the TI-83+. 

 

 
 

TI-89 Titanium 

 

   
 

The TI non-CAS and CAS nspires appeared in 2007, and the touch pad nspires appeared in 

2010. The screen shot here shows finding the zeros using a CAS nspire. 

 

 
TI-Touch Pad Nspire 
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Basic Polynomial Solver Programs  

 

The TI-83 appeared in 1996 and the first version of the polynomial solver program was written 

for TI-83 and TI-82 by the author the same year. This program hangs indefinitely if any two 

pairs of complex zeros have similar moduli. For example, the above polynomial has two such 

pairs of complex zeros causing the program to run indefinitely without successfully finding all 

the zeros. 

 

 

Here are the two zeros with 

similar moduli that foiled the 

program.  

 

The program runs successfully 

for the polynomial      
                 
because the two pair of 

complex zeros have 

sufficiently different moduli: 
 

 

 
TI-83 

 

 
Each row in the output matrix 

gives a complex zero. 

 

 

The following table gives a timeline for the TI graphing calculators and the various polynomial 

solvers. 

 

A = flash application, B = basic program or function, C = built-in command 

 

Year 90 91 92 93 94 95 96 97 98 99 00 01 

TI 81  85 82  80,92 83 86 73,89 92+,83+  83+SE 

solver   C   C B-82,83 C C C  A83+,89 

 

Year 02 03 04 05 06 07 08 09 10 
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TI V200  84+,89T   nspires   Nspire touch 

solver C  C-89T   C-nspire  B-nspire  

 

 

Basic Polynomial Method using Eigenvalues 

 

The non-CAS TI-nspire does not have a polynomial command, but it does have a built-in 

command for finding all the eigenvalues of a matrix. This suggests the following method:  

 

1. Divide the polynomial by its leading coefficient. 

2. Create an upper Hessenburg matrix whose eigenvalues are the same as the zeros of the 

polynomial. 

3. Use the eigenvalue command.  

 

 

Recall that a Hessenburg matrix is almost triangular. 

Specifically, an upper Hessenburg matrix has zeros below 

the subdiagonal. The polynomial 
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To prove this equivalence, use the definition of the characteristic polynomial and expand along 

the first column: 
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Detailed Polynomial Solver Method based on a QR-Algorithm 

 

Our algorithm will depend upon the Real Schur Decomposition of a square real matrix: 

 

• If A is a real nn matrix, there exists an orthogonal matrix Q such that Q
T
AQ = R is 

quasi-upper triangular. 

• A quasi-upper triangular matrix is an upper-Hessenburg matrix whose eigenvalues can 

be obtained from the 11 and 22 blocks along its diagonal.  

 

This is analogous to the factorization of a real polynomial into linear and irreducible quadratic 

factors.  

 

A Given’s Matrix is defined to be an nn matrix G = 

J(I,j,θ) where 1 ≤ I < j ≤ n 

• gkk = 1 if i k and jk  

• gii = gjj = cos θ  

• gij = sin θ  

• gji = - sin θ  

• gkl = 0, otherwise 

• Given’s matrices are orthogonal. 

• They are basically an identity matrices 

embedded with a rotation in the i-j plane.  
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The following simplified Q-R 

Algorithm was used, but the 

deflation was actually done in 

the lower right corner in the TI-

83 and TI-82 programs.  

1. Start with upper-Hessenburg matrix H. 

2. Set all subdiagonals to zero that satisfy 

|hi,i-1|≤ε(|hii| + |hi-1,i-1|). 

3. Apply Hessenburg Q-R step. 

a) Obtain R = QH using Given’s matrices. 

b) Replace H with RQ
T
. 

4. Deflate (break H apart where 0 appears in lower 

diagonal). 

5. Stop when H is 11 or 22. 

 

Here is the Q-R Part of TI-83 program: 

 

Create Given’s Matrices  QH Step  RQ
T
 Step  

For(K,1,N-1) 

[A](K,K)\->\A 

[A](K+1,K)\->\B 

If B=0 

Then 

1\->\C:0\->\S 

Else 

If abs(B)\>=\abs(A) 

Then 

A/B\->\T 

1/\root\(1+T\^2\)\->\S 

ST\->\C 

Else 

B/A\->\T 

1/\root\(1+T\^2\)\->\C 

CT\->\S 

End:End  

C\->\\L\TEMPC(K) 

S\->\\L\TEMPS(K) 

For(J,K,N) 

C[A](K,J)+S[A](K+1,J)\->\A 

C[A](K+1,J)-S[A](K,J)\->\B 

A\->\[A](K,J) 

B\->\[A](K+1,J) 

End:End  

For(K,1,N-1) 

\L\TEMPC(K)\->\C 

\L\TEMPS(K)\->\S 

For(I,1,K+1) 

C[A](I,K)+S[A](I,K+1)\->\A 

C[A](I,K+1)-S[A](I,K)\->\B 

A\->\[A](I,K) 

B\->\[A](I,K+1) 

End:End  

 

The TI-82 and TI-83 programs use a crude upperbound for the moduli of all the polynomial 

zeros that the author found in a precalculus text: 
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The zeros approximated by the eigenvalues of the upper Hessenburg matrix were actually used 

as a starting point for a modified Newton’s method as described below: 

 

• This will converge quadratically even if the multiplicity of a 

zero is more than one. 

• If p is a polynomial, substitute f=p/p’ in Newton’s method to 

obtain the following iterative formula: 
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Recall that a sequence xn is said to converge quadratically to c if there 

exists a positive, real constant K such that  
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Here is the algorithm used to for the TI-82/83 programs: 

1. Check if polynomial is linear, quadratic, or 

 x
n
-k=0. If yes, solve and stop. If not, continue to Step 2. 

2. Create upper Hessenburg matrix. 

3. Compute tolerance based on maximum possible zero. 

4. Perform QR iteration until tolerance is met. 

5. Break off 11 or 22 block. 

6. Find approximate eigenvalue. 

7. Find accurate eigenvalue using a modified Newton’s method. 

8. Perform synthetic division and replace polynomial with quotient to reduce its degree by 

1 or 2. 

9. Go to step 1.  
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The Dictionary as Southern Cocktail: A Conversation with Roy Blount Jr. 

Michael Ray Taylor, M.F.A. 

Professor of Mass Media Communication 

 

Abstract 

An interview conducted via email with Southern writer and public radio 

humorist Roy Blount Jr. 

 

 

Roy Blount Jr. is one of those rare writers whose actual voice has become almost as familiar as 

his literary one. Most weekends, you can hear his signature blend of Georgia drawl and rapid-

fire wit on the NPR news quiz “Wait, Wait, Don’t Tell Me.” He periodically recites comical 

poetry and inflicts musical screeching (as founder of the fictional “Society for the Singing 

Impaired”) on Garrison Keillor’s “A Prairie Home Companion.” The Vanderbilt graduate has 

performed a successful off-Broadway one-man-show, appeared on several network TV shows, 

and stays busy on the college lecture circuit.   

 

Despite all this talking, Blount has somehow managed to sit down and write 21 books, in a 

literary voice that, as Michael Dirda recently wrote in the Washington Post, “neatly balances 

real learning with easy-loping charm.” His penchant for pithy puns, political petards and 

periodic alliterative passages produces sentences that pull chuckles from readers; he piles these 

into paragraphs and punch lines that can make them positively puncture a gut. With such a 

facility for wordplay, it is no wonder that one of Blount’s many side gigs is serving as a usage 

adviser to The American Heritage Dictionary. Evidently unsatisfied with merely providing 

guidance to the dictionary, he has now written one of his own, Alphabet Juice: The Energies, 

Gists, and Spirits of Letters, Words, and Combinations Thereof; Their Roots, Bones, Innards, 

Piths, Pips, and Secret Parts, ... With Examples of Their Usage Foul and Savory, recently 

released in paper by Farrar, Strauss and Giroux.  The book explores the provenance of an 

eclectic variety of words in short, invariably funny essays that average about a page or two 

long. 

 

Writing for Chapter 16, an online publication of Humanities Tennessee, Michael Ray Taylor 

managed to catch up with Blount between radio appearances and deadlines for a conversation 

on the book, the South and the state of American letters. 


