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Great (But Lesser Known) Theorems 
 

Fred Worth, Ph.D. 
Professor of Mathematics 

 
Abstract - Mathematics is filled with wonderful theorems.  Many of these theorems are well 
known, such as Fermat's Last Theorem, the Pythagorean Theorem, and the First and Second 
Fundamental Theorems of Calculus.  There are, however, some wonderful theorems that are 
not nearly so well known.  The purpose of this paper is to present three of those results. 

 
Sturm's Theorem 

 
I encountered this theorem in Nathan Jacobson's wonderful book Basic Algebra I (2e).  It is 
credited to Jacques Charles François Sturm (September 29, 1803 - December 15, 1855). 
 
First, some terminology. 
 
The Standard Sequence for a polynomial f(x) is 
f0(x) = f(x) 
f1(x) = f '(x) 
f0(x) = q1(x) f1(x) - f2(x),       deg f2 < deg f1   
f1(x) = q2(x) f2(x) - f3(x),       deg f3 < deg f2  
. . .   
fi-1(x) = qi(x) fi(x) - fi+1(x),    deg fi+1 < deg fi   
. . .   
fs-1(x) = qs(x) fs(x),         that is, fs+1 (x) = 0   
 
Note that, for n > 1, fn is the negative of the remainder from the division algorithm. 
 
Sturm's Theorem - Let f(x) be a polynomial of positive degree with real coefficients and let 
{f0(x) = f(x), f1(x) = f'(x), f2(x), . . . , fs(x)} be the standard sequence for f(x).  Assume [a, b] is 
an interval such that f(a) ≠ 0 ≠ f(b).  Then the number of distinct roots of f(x) in (a, b) is Va - Vb 
where Vc denotes the number of variations in sign of {f0(c), f1(c), . . . , fs(c)}.  [Note - drop any 
0's from the sequence.] 
 
Here is an example, using Maple. 
 
> f0:=x^3-7*x+6; f1:=diff(f0,x); f2:=-rem(f0,f1,x); f3:=-rem(f1,f2,x); f4:=-rem(f2,f3,x); 



Academic Forum 23    2005-06 

5 

 
> [subs(x=0,f0),subs(x=0,f1),subs(x=0,f2),subs(x=0,f3)]; 

 
> [subs(x=1.5,f0),subs(x=1.5,f1),subs(x=1.5,f2),subs(x=1.5,f3)]; 

 
> [subs(x=3,f0),subs(x=3,f1),subs(x=3,f2),subs(x=3,f3)]; 

 
> fsolve(f0,x); 

-3., 1., 2. 
 
 
Note that there are two sign changes for x = 0, one for x = 1.5 and none for x = 3.  Thus, there 
are 2-1 = 1 roots between 0 and 1.5, 2-0 = 2 between 0 and 3, and 1-0 = 1 between 1.5 and 3. 
 
Now let us consider another example. 
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Note that there are five sign changes for x = 0, two for x = 1.5 and none for x = 3.  Thus, there 
are 5-2 = 3 roots between 0 and 1.5, 5-0 = 5 roots between 0 and 3, and 2-0 = 2 between 1.5 
and 3. 

Sarkovskii's Theorem 
 
The next result is something I first encountered in Robert L. Devaney's great book An 
Introduction to Chaotic Dynamical Systems (2e) 
 
Terminology 
f1 = f 
fn = f ° fn-1 

The point, x, is a fixed point of f if f(x) = x. 
The point, x, is a periodic point of period n for f if x is a fixed point of fn and is not a fixed 
point for fk for any k < n. 
 
We now define an ordering on the positive integers. 
 
Sarkovskii's Ordering 
 
3  5  7  . . .   2 ⋅ 3  2 ⋅ 5  . . .   22 ⋅ 3  22 ⋅ 5  . . .  23 ⋅ 3  23 ⋅ 5  

 . . .   23  22  2  1. 
 
Theorem - Suppose f: R → R is continuous.  Suppose f has a periodic point of period k.  If k 

 n in the Sarkovskii ordering, then f also has a periodic point of period n. 
 
Sarkovskii's Theorem first appeared in the Ukrainian Maths Journal in 1964 (Vol 16, pp 61-71).   
 
In December 1975, Tien-Yien Li and James A. Yorke published a paper in the American 
Mathematical Monthly (82, 985-992.) entitled "Period Three Implies Chaos."  This paper 
proved a similar result on intervals.  They didn't mention Sarkovskii.  Due to the poor 
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communication between Eastern Europe and the United States mathematical communities, it is 
possible they were unaware of his result. 
 
A converse of Sarkovskii's is also true.  There are maps which have periodic points of period k 
and no "higher" period according to the Sarkovskii ordering. 
 
For example, consider the following map. 

 
Let f(x) = 3 for x < 1 and f(x) = 1 for x > 5.  f5(1) = f4(3) = f3(4) = f2(2) = f(5) = 1.  Thus, 1, 2, 
3, 4 and 5 are all period 5 points.  Note that f3[1, 2] = [2, 5], f3[2, 3] = [3, 5] and f3[4, 5] = [1, 4] 
so the only possible period 3 points are in [3, 4] since f3[3, 4] = [1, 5].  We see f[3, 4] above.  It 
contains a fixed point, x = 10/3.  But, note from the graph below of f3 that  f3 is monotonically 
decreasing on [3, 4] so the only fixed point of f3 is 10/3, the fixed point of f. 
 

 
No point outside of [1, 5] will be periodic since all iterations of them will be in [1, 5].  Thus we 
have a period 5 point but no period 3 point. 
 
Similar functions can be constructed having period 2n+1 points but no 2n-1 points for n > 2. 
 
For the even periods, the construction is a little messier and I'll refer you to Devaney's book. 
 

Solution by Radicals of 3rd and 4th Degree Polynomials 
 
College algebra students are familiar with the quadratic formula, a method for solving second 
degree polynomial equations by radicals.  I first encountered the analogous formulas for third 
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and fourth degree polynomials in the fascinating book An Introduction to the Theory of Groups 
by Joseph Rotman. 
 
Cubic Formula 
 
Consider x3 + Ax2 + Bx + C.  
 
Let X = x + A/3. Then 
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Suppose a3 + Qa + R = 0.  
 
Write a = b + c where b and c are to be determined.  
 
Then a3 = (b + c)3 = b3 + c3 + 3(cb2 + bc2) = b3 + c3 + 3abc.   
 
Then b3 + c3 + (3bc + Q)a + R = 0. (*)  
 
Also suppose bc = -Q/3. Then the middle term in (*) vanishes. 
 
Therefore (*) becomes b3 + c3 = -R and b3c3 = -Q3/27. Thus, from substitution we have  

R
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By the quadratic formula we have  
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where the cube roots are chosen so the product bc = -Q/3. This is a root of the altered cubic 
equation so x = a - A/3.  Once that root is divided out you have a quadratic which can be solved 
easily.  
 
x3 + Ax2 + Bx + C.  
x = a - A/3  
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x3 + Ax2 + Bx + C = 0 has solution  

 
 
and x3 + Ax2 + Bx + C = (x - a)(x2 + bx + c). 
 
Quartic Formula 
 
For the quartic x4 + Ax3 + Bx2 + Cx + D, let x = X - A/4. This gives 
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X4 + QX2 + RX + S = (X2 + KX + L)(X2 - KX + M) where finding K, L and M reduces us to 
two quadratics.  
 
Expanding the right hand side and equating coefficients of like powers of x gives L + M - K2 = 
Q, K(M - L) = R and LM = S. 
 
Thus, from the first two of these we get  
2M = K2 + Q + R/K and 2L = K2 + Q - R/K.  (**) 
Substituting these into the third equation gives (K3 + QK + R)(K3 + QK - R) = 4SK2 which 
becomes K6 + 2QK4 + (Q2 - 4S)K2 - R2 = 0 which is a cubic in K2 and can thus be solved using 
the technique given above. 
 
We then can solve for L and M in (**) giving two quadratics which we can solve using the 
quadratic formula.   
 
One solution is: 
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The other solutions are similar. 
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