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Abstract 

In this paper, we will consider a couple of preliminary results regarding fixed points of certain 

continua.  These results are used to lead to the main result, namely that if f is a mapping of a 

tree, T, into itself and if T0 =   contains at least two points then there is a positive 

integer, k, such that f
k
 has two fixed points.  In particular, k is not greater than the number of end 

points of T.  This result leads to an elementary proof of a result due to Kato, that shift 

homeomorphisms of the inverse limit of a tree with a single bonding map are not expansive. 

  

Terminology and Introduction 

F or a function, f, and a positive integer, n, we define the following: f 
1
 = f, f 

n
 = f(f 

n-1
), f

- n
 = (f 

-

1
)

n
.  Also, f 

0
 will denote the identity function.  A homeomorphism, f, of a metric space, X, onto 

itself is called expansive if there is a positive number, ε, such that if x and y are distinct points of 

X, then there exists an integer, n = n(x,y), such that d(f 
n
(x), f 

n
(y)) > ε.  It should be noted that n 

may be negative.  The positive number, ε, is called an expansive constant.  This concept, using 

the term unstable homeomorphism, was first defined in 1950 by Utz [4].  In 1955, Gottschalk 

and Hedlund changed the name to expansive homeomorphism [1]. The term "unstable" is 

probably more accurate, since two points could be moved farther apart and then come back 

together again.  "Expansive" seems to imply a more regular process of increasing distances.  In 

fact, "expansive" is used in some areas of topology to mean exactly that. 

By a mapping, we mean a continuous function.  By a continuum, we mean a compact, 

connected metric space.  A tree is a finite, connected union of arcs, containing no simple closed 

curve. 

Let X be a topological space.  Let f be a mapping of X to itself.  Let M be the subset of the 

product space X ´ X ´ . . .  with the property that (x1, x2, . . . ) Î M if and only if f(xi+1) = xi, for i = 

1, 2, . . . .  Then M is called the inverse limit of X with the single bonding map, f, and is denoted 

{X, f}.  If X is a metric space with metric d, we define a metric, ρ, on M by ρ((x1, x2, . . . ), (y1, 

y2, . . . )) = ån³1 d(xn, yn)/2
n
. 

There is a natural homeomorphism of M onto itself defined as follows:  h(x1, x2, . . . ) = (f(x1), 

x1, x2, . . . ).  This homeomorphism is called the shift homeomorphism.  Let f be a map of X to 



itself.  The orbit of x under f is defined by O(x) = .  A suborbit of x under f is any 

doubly infinite sequence { . . . , x-2, x-1, x0, x1, x2, . . . } such that x0 = x and f(xi+1) = xi, for all 

integers i.  

The mapping f is expansive on X, with expansive constant ε > 0, if x and y in X with x ¹ y 

implies, for each suborbit, O(x) of x and O(y) of y, there exists an integer n such that d(xn, yn) > 

ε.  

  

 

 

Preliminary Results 

The proof of this first result is a simple exercise. 

  

Lemma 1.  Let f be a map of a metric space X onto itself.  The shift homeomorphism on M = 

{X, f} is expansive if and only if f is expansive.  

  

Lemma 2.  If f is a map of [0, 1] onto itself, then f
2
 has at least two fixed points. 

Proof.  It is trivial to show that f has a fixed point.  If f(0) = 0 or f(1) = 1, then f must have two 

fixed points.  We will consider only the case where f has only one fixed point. 

Let p  be the fixed point of f.  There exist points, a and b, such that f(a) = 1 and f(b) = 0.  It is not 

hard to show that we must have a < p < b.  Additionally, there must be points, k and m, with a < 

m < p < k < b, such that 

f(m) = b and f(k) = a. 

 



  

  

  

  

  

  

  

 

 

                

Then, f
2
(k) = f(f(k)) = f(a) = 1 and f

2
(m) = f(f(m)) = f(b) = 0.  We must, then, by the Intermediate 

Value Theorem have points r and s, with 0 £ r < m < p < k < s £ 1 such that f
2
(r) = r and f

2
(s) = s. 

  

  

  

  

  

  

  

  

  

QED 

The next result comes with an interesting historical note.  It was proved by R. K. Williams of 

Southern Methodist University.  At the same time that Williams was doing some of this research, 

the author of this paper was a student in Williams' Calculus 2 class.  The proof will not be given. 

 

 

 

 

 



  

Lemma 3.  Let f be a map of a compact metric space onto itself.  If the set of fixed points of f is 

infinite then f is not expansive.  Further, if for some positive integer, n, the set of points of period 

n is infinite, f is not expansive.  [4, 5] 

  

Theorem 1.  Let f be a uniformly continuous map.  Then f
n
 is expansive if and only if f is 

expansive for any nonzero integer n.  [4, 5] 

  

Lemma 4.  If g is a map of [0, 1] onto itself, then g is not expansive.  [5] 

Proof.  If g has infinitely many fixed points we are done.  Similarly for g
2
.  Let f = g

2
. 

Let p and q be fixed points of f, with p < q,  such that no point between p and q is a fixed point of 

f.  Let e > 0 be given. 

We will assume that f(x) > x for all x Î (p, q).  The case where f(x) < x is similar. 

Suppose, first, that f(x) is strictly increasing on (p, q).  Let a Î (p, p + e).  Let a0 = a.  For n > 0, 

let an = f
n
(a).  For n < 0, let an be a point in (p, an+1) such that f(an) = an+1.   Let N be the least 

positive integer such that aN Î (q - e, q).  Since f is uniformly continuous, we can choose d > 0 

such that |f 
i
(x) - f 

i
(y)| < e for all i Î {1, 2, . . . , N} whenever |x - y| < d.  Choose b Î (p, p + e) Ç 

(a - d, a + d).  Let b0 = b.  For n > 0, let bn = f
n
(b).  For n < 0, let bn be a point in (p, bn+1) such 

that f(bn) = bn+1.   For all n, |bn - an| < e.  Thus f is not expansive. 

Suppose f achieves a local maximum, say f(k), on (p, q).  For n < 0, let kn be a point in (p, kn+1) 

such that f(kn) = kn+1.  Let N be the greatest integer such that |kN - p| < e.  Since f is uniformly 

continuous, we can choose d > 0 such that |f 
i
(x) - f 

i
(y)| < e for all i Î {1, 2, . . . , -N} whenever |x 

- y| < d.  Choose a Î (p, kN) Ç (kN - d , kN + d). Choose b Î (kN , p + e) Ç (kN - d , kN + d).  If f 
-

N
(a) = f 

-N
(b), then let c = a and d = b.  If f 

-N
(a) < f 

-N
(b), then choose c Î (a, kN) such that f 

-N
(c) 

= f 
-N

(b).  Let d = b.  If f 
-N

(a) > f 
-N

(b), then choose d Î (kN, b) such that f 
-N

(a) = f 
-N

(d).  Let c = 

a.    Let c0 = c.  For n > 0, let cn = f 
n
(c).  For n < 0, let cn be a point in (p, cn+1) such that f(cn) = 

cn+1.  Let d0 = d.  For n > 0, let dn = f 
n
(d).  For n < 0, let dn be a point in (p, dn+1) such that f(dn) = 

dn+1.  For all n, |cn - dn| < e.  Thus, f is not expansive.  Thus, g is not 

expansive.                                                                         

  

QED 

  



Theorem 2 follows from Lemmas 1 and 3.  Theorem 2 first appeared, without proof, in a paper 

by Jakobsen and Utz in 1960.  

  

Theorem 2.  Let A be an arc and M = {A, f}, where f is a map of A onto itself.  Then the shift 

homeomorphism on M is not expansive.  [2] 

  

Lemma 5 is an easy exercise. 

  

Lemma 5.  Let f be a map of a continuum, X, onto itself.  Let n be a positive integer.  Then the 

shift homeomorphism on {X, f} is expansive if and only if the shift homeomorphism on {X, f 
n
} 

is expansive.  

  

Main Result 

We will adopt the following convention.  Let T be a tree and let A and B be points of T.  Let 

[AB] be the sub-arc of T with endpoints A and B.  There is a homeomorphism, g, of [AB] onto 

[0, 1], with g(A) = 0 and g(B) = 1.  For x and y in [AB], we say x < y if g(x) < g(y).  Let [AB] be 

an arc in T.  Then [AB] is said to satisfy Condition 1 if there exist a branch point, x, and a point, 

y, in [AB] such that f(y) = x, y < x and f(yB] does not intersect [AB].  We say [AB] satisfies 

Condition 2 if there exist a branch point, x, and distinct points, y and z, in [AB] such that y < x 

< z, f(y) = f(z) = x and f(yz) does not intersect [AB]. 

  

Theorem 5 was proved earlier if the tree is an arc.  Therefore, in the proofs we will assume the 

tree has at least one branch point. Theorem 3 is a well known result.  We include the proof since 

the method of proof will be helpful in proving Theorem 5 below.  The essential idea of the proof 

is a "dog chases rabbit" argument. 

  

Theorem 3.  Trees have the fixed point property. 

Proof.  Let T be a tree and f a mapping of T into itself.  Let O be a branch point of T.  If no such 

point exists, then T is an arc.  Suppose f(O) = P ¹ O.  Let A1 be an endpoint of T such that P is in 

[OA1].  If there are no branch points in (OA1] then f restricted to [OA1] has a fixed point. 

Suppose f does not have a fixed point in [OA1].  Then either Condition 1 or Condition 2 must 



hold on [OA1].  In either case, we have a branch point, B1, in (OA1] and a point, y, of [OA1] such 

that y < B1, f(y) = B1 and f(B1) is not in [OA1].  Choose an end point, A2, of T, such that f(B1) is 

in [B1A2]. 

Inductively, suppose f does not have a fixed point in [BiAi+1].  Then either Condition 1 or 

Condition 2 must hold.  In either case, we have a branch point, Bi+1, in (BiAi+1] and a point, y, of 

[BiAi+1] such that y < Bi+1, f(y) = Bi+1 and f(Bi+1) is not in [BiAi+1].  Choose an end point, Ai+2, of 

T, such that f(Bi+1) is in [Bi+1Ai+2]. 

Since the number of branch points is finite, there exists a positive integer, k, such that no branch 

point is in (BkAk+1].  Then f has a fixed point in [Bk, Ak+1].       QED 

  

Theorem 4.  Let f be a map of a tree, T, onto itself.  Then, if N is the number of end points of T, 

there exists a positive integer k £ N such that for some non-degenerate sub-arc [OA] of T, f
k
[OA] 

Ê [OA]. 

Proof.  Let O be a fixed point for f and let A1, . . . , AN be the end points of T.  Let Ii = [OAi].  

Suppose O ¹ A1.  Let R0 = A1.  There exists a point, P1, of T such that f(P1) = R0.  P1 is in some 

Ij.  Let R1 = Aj.  Thus, f[OR1] Ê [OR0]. 

  

 

 

Inductively, there exists a point, Pi+1, of T such that f(Pi+1) = Ri.  If Pi+1 is in Ij then let Ri+1 = Aj.  

Thus, f[ORi+1] Ê [ORi].  Also, f
r
[ORi+1] Ê [ORi-r+1] for  r = 1, 2, . . . , i+1. 

  

There exist k and s such that 0 < k - s £ N and Rk = Rs.  Therefore, f
k-s

[ORk] Ê [ORs] = 

[ORk].                                                                                               

  

QED 

            

We can now prove our main result. 

  

Theorem 5.  Let f be a mapping of a tree, T, into itself. If T0 =  contains at least 



two points then there is a positive integer, k, such that f
k
 has two fixed points.  In particular, k is 

not greater than the number of end points of T. 

Proof.  If T0 contains at least two points, then T0 is a tree and f(T0) = T0. Thus it suffices to 

consider the case where f is a surjection.  

By Theorem 3, we know f has a fixed point, O.  Let N denote the number of end points of T.  By 

Theorem 4, we know there exists an arc, [OA], and a positive integer, k £ N, such that f 
k
[OA] 

contains [OA].  Let g = f 
k
. 

Let B be the set of branch points of T.  Suppose g fails to have a second fixed point in [OA].  

Since g[OA] contains [OA], either Condition 1 or Condition 2 holds.  Let B1 = x from Condition 

1 or Condition 2.  Choose an end point, A1, of T such that g(x) is in [OA1]. 

Following the proof of Theorem 3, we obtain a branch point, Bi and an end point, Ai, such that 

(BiAi] contains no branch point of T and g(Bi) is in [BiAi].  Thus, g has a fixed point in [BiAi] 

and this point is not O.                                                                                  QED 

  

A Corollary 

  

We give the following lemma without proof. 

  

Lemma 6.  (Intermediate value theorem for trees)  Let f be a mapping of a tree, T, into itself.  

Let [AB] be an arc in T such that f[AB] contains [AB].  Suppose x and y are members of [AB] 

with x < y and f(x) and f(y) are in [AB] with f(x) ¹ f(y).  Then for any member, z¢, in (f(x),f(y)), 

there exists z in (x,y) such that f(z) = z¢. 

  

In [3], Kato proved that the shift homeomorphism on M is not expansive.  Let f be a map of a 

tree, T, to itself.  If T0 =  is a singleton, then the inverse limit, (T, f) is degenerate.  

If T0 is not a singleton, then it is a non-degenerate subtree of T such that f(T0) = T0.  If the shift 

homeomorphism on (T0, f) is not expansive then the shift homeomorphism on (T, f) will not be 

expansive.  Thus, the following theorem will establish Kato's result. 

  

 

 



Theorem 6.  Let T be a tree and let f be a map of T onto itself.  Let M = {T, f}.  Then the shift 

homeomorphism on M is not expansive. 

  

The proof of this result is given in [6]. 
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