Crying at the Movies: A Physiological and Emotional Connection

Paul Glover, M.A.
Assistant Professor of Communication

Abstract
This essay explores assumptions about why humans cry in response to films or film sequences dubbed as “emotional.” Physiological reasoning for crying is supported in this essay using information published by Tom Lutz’s Crying. His text explores the physiological assumptions about human crying using the work of Charles Darwin and other scientists.

The emotional connections between film viewing and crying are discussed in this essay citing research into infant communication, personality and individual differences, and moving image theory supported by contemporary scientists.

In conclusion, the thesis of this essay supports the notion that humans have the ability to cry at birth, which then develops into a communication tool between infant and mother/caregiver. As they develop, crying mechanisms are therefore strengthened and triggered by film viewing.

Most people have felt the rising of tears as their body responds to a sad or triumphant moment during the plot of a movie. In the traditional Hollywood narrative, the momentous climax or sad moment concerning a character is, at times, predictable. Males and females can usually tell you what type of specific movie moments make them cry or exhibit what is called “public displays of empathy” or PDE. However, shedding tears or feeling the “lump” in one’s throat because a character possess or exhibits traits or attributes that “reach” the audience or give them something to “relate to” does not actually explain what triggers the crying mechanism.

Ophthalmic surgeon Abraham Webb called tears a “fluid sandwich, with an inner layer of mucin against the eye surface, a middle aqueous layer, and an outer layer of oils that keeps the tears from evaporating too quickly.” (Lutz 67). Cathartic experiences associated with films are rarely described in such scientific terms. Most often the term “emotion” is used. But simple research concerning why people cry at films often leads to discussions of emotional matters concerning cultural and constructive assumptions. The intention here is to take an ecological rather than cultural perspective and attempt to offer answers to the following question. Why are crying behaviors, designed physically to protect the eyes, triggered by film viewing and perceived by audience members as a relationship with a character’s triumphs and failures, labeled as emotional tears? Beginning with a look at the chemical compound of tears and finishing with a discussion about emotional ties to neurological processes, there is hope of finding ecological relationships between crying and film viewing.

Physiology of tears

“Physiologists have studied the chemical content of emotional tears and shown that they differ from the tears, called basal or continuous tears, that lubricate our eyes when we are not crying.” (Lutz 18). Without this lubrication we would not be able to move our eyes and would risk infection. This protective membrane shields our eyes from
the outside world. Ophthalmologists classify three different kinds of tears. Basal tears are
the continuous tears that lubricate our eyeballs. Reflex or irritant tears are produced when
we get poked in the eye (or anticipate danger to eyes) or we chop onions. Psychic or
emotional tears are caused by communicative and specific feeling states. As noticed,
these tears have separate functions and they also have different concentrations of
“chemicals, hormones and proteins.” (Lutz 68).

The lacrimal system is what all three types of tears have in common. This system
has secretory and excretory functions that produce tears and drain them. The main
lacrimal gland, located between a shallow depression in the frontal bone and the eyeball,
is responsible for producing tears stimulated by irritation or emotion. There are many
smaller, accessory lacrimal glands that also contribute to basal tears. Basal tears are
produced at the rate of one to two microliters a minute, which is approximately five to ten
ounces a day depending on the size of the eyeball. During this daily process some of the
fluid evaporates between blinks and some is drained through small, permanent openings
at the nose end of each eyelid on a slight elevation of tissue known as the papilla
lacrimalis. “Tears drain through the puncta into ducts that drain into the lacrimal sac
called the canaliculis. From the lacrimal sac the tears flow into the nasolacrimal, which
empties into the nose.” (Lutz 70). When tears begin to overflow, perhaps due to irritation
or emotions provoked during movie viewing, the puncta is unable to handle the flow and
tears drain outward over the eyelids. This is an automatic biological reaction we call
crying.

Tears are composed of water, mucin, and oils along with antibacterial proteins,
immunoglobins, glucose, urea and salts. In 1957, UCLA researcher Robert Brunish
concluded “emotional tears had a higher protein concentration than reflex tears and the
amount of various proteins-lysozome, globulin, and albumin-varied in the two kinds of
tears as well.” (Lutz 102). These findings were confirmed twenty years later by
researcher William Frey who was able to make the distinctions by collecting tears
produced by subjects exposed to either a tearjerker film (including 1971’s “Brian’s
Song”) or onions. The findings also supported distinctions between emotional tears and
reflex tears and allowed researchers to make determinations concerning the activation of
particular tears.

The following illustrations map the lacrimal system:
Early Assumptions about Crying

The history of lacrimation dates back to the Hippocratic writers and European medicine throughout the Renaissance. Unfortunately, many of the writings, though attempting to focus on the brain and its pathways, became confounded by spiritual connections. For instance, Rene Descartes demonstrated in *The Passions of the Soul* (1649) that he understood the circulation of the blood and that the nerves in the brain were necessary for sensation and perception; but he could not resist asserting his belief that the brain and nerves contained “a certain very subtle air or wind which is called the animal spirits” which move through the body animating muscles and making action possible. Descartes also expressed ideas concerning bodies moving on their own, without any help from the soul or mind. “He uses the example of a friend thrusting a hand into our face; we shut our eyes and wince, even if we know our friend would never hurt us.” (Lutz 74).

Eventually, dissection replaced the classical paradigms of philosophical explanations of tears, and attempts to map the physiology of glands; blood and organs were used for research. Niels Stensen’s *Anatomical Observations of the Glands of the*
Eye & Their New Vessels thereby Revealing the True Source of Tears (1662) gave a revised explanation of tears based on the dissection of a sheep’s head. This was first in suggesting the centrality of the lacrimal glands, though he was later proven wrong in his assumption that the puncta produced tears rather than draining them. In 1792, French anatomist and surgeon Jacques-Francois-Marie Duverney demonstrated the source of tears in the lacrimal gland and their pathways by first describing the important muscles attached to the eyelids and the glands. Johann Rosenmuller described the anatomy of the gland in 1797 and in the 1820’s Karl Ernst von Baer studied the embryology of the lacrimal excretory system. In 1860, Hungarian physician Jan Nepomuk Czermak identified some of the nerves that enervate the lacrimal glands. These discoveries and writings demonstrated a better understanding of how the body works than previous writings that tried to include passions and emotions within philosophical taxonomies that Lutz describes as, “each one goofier than the next.” (76). But collectively, these findings set the stage for Charles Darwin’s contributions to our understanding of the physiology of tears.

Darwin’s The Expressions of Emotions in Man and Animals (1872) addressed larger questions about bodily origin and function of emotion in general, and crying in particular. He stated that humans and mammals express emotion in order to alleviate distress. “Infants, for instance, when they suffer even moderate pain, cry out violently for the sole purpose of communicating their discomfort.” (Lutz 77). He stated that babies who can communicate get fed when hungry more regularly than those who cannot and concluded that crying out is a standard mammalian behavior; tears are simply the unintended side effects of the distress calls. During these distress calls, the infants also strenuously contract the muscles around the eye. Based on centrality of the lacrimal system, noted by Stensen in his sheep’s head dissection observations, these contractions also affect the lacrimal gland and its accessory glands. Darwin used six photographs of crying infants to illustrate his point:

The corrugators of the brow seem to be the first muscles to contract; and these draw the eyebrows downwards and inwards toward the base of the nose, causing vertical furrows, that is a frown, to appear between the eyebrows; at the same time they cause the disappearance of the transverse wrinkles across the forehead. The orbicular muscles contract almost simultaneously with the corrugators, and produce wrinkles all around the eyes; they appear, however, to be enabled to contract with greater force, as soon as the contraction of the corrugators has given them some support. Lastly, the pyramidal muscles of the nose contract; and these draw the eyebrows and the skin of the forehead still lower down, producing short, transverse wrinkles across the base of the nose…When these muscles are strongly contracted, those running to the upper lip likewise contract and raise the upper lip…The raising of the upper lip draws upward the flesh of the upper parts of the cheek, and produces a strongly marked fold on
each cheek, the naso-labial fold, which runs from near the wings of the nostrils to the corners of the mouth and below them. (Lutz 79).

He also used these findings to describe the muscular changes around the mouth, the changes in respiration and circulation, and other physical manifestations that accompany crying. Darwin’s research permeated other sciences concerning crying and Herbert Spencer referenced these manifestations later in *Principles of Psychology* (1855). However, Darwin’s records remain more detailed and accurate.

Darwin’s main conclusion is that, “weeping is an incidental result, as purposeless as the secretion of tears from a blow outside the eye, or as a sneeze from the retina being affected by a bright light.” The prolonged screaming of an infant leads to “the gorging of the blood vessels of the eye” due to the increased respiration that accompanies crying. The “gorging” floods the eyeball and surrounding tissue with blood.

This engorgement leads, at first to consciously and at last habitually, to the contraction of muscles around the eyes in order to protect the veins and arteries from the increased pressure. These contractions squeeze the tear ducts, which, as they secrete further help cool the overheated and engorged eyeballs. (Lutz 79).

This suggests that Darwin considered emotional tears the same as reflex tears and separated any connection between crying and “animal spirits”.

**Infantile Considerations**

The reason babies cry at birth is not known but very soon thereafter the crying becomes communication between baby and mother. In 1980, Murry and Murry referenced Alfred Adler who suggested in *The Psychology of Early Childhood* that an infant’s first cry “represents an overwhelming sense of inferiority at thus suddenly being confronted by reality without ever having had to deal with its problems” and to the people present at childbirth it is a “welcome sign that the infant is breathing normally.” He went on to say that, “animals do not cry at birth…on rare occasions babies cry in utero and such a cry can be heard if the membranes have ruptured.” (Murry & Murry 7).

It is established when humans begin crying, thus contracting muscles and setting the lacrimal system into motion. Darwin had proved that the capacities to shed tears is inherent, whether the tears are incidental or not, but the reasons why are not as simple.

Darwin’s research into the types of information contained within infant crying is considered important in the area of infant non-verbal communication. In 1964 M.D. Sheridan stated in *Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Services* that, “Infants communicate [non-verbally] with their mothers by crying, watching her, smiling, laughing, playing…frowning, pushing her away and by vocalizations leading to speech.” (Murry & Murry 5). Researching the way humans seek, perceive and process information, beginning with infants, may lead us into studying ecological relationships between moviegoers and film viewing. Joseph Anderson points out in *The Reality of Illusion* in reference to linkage between facial recognition and
character recognition that infants, “consistently exhibit such information-gathering activity as looking towards sound, following objects with their eyes, and reaching out towards things they see...In short, they prefer situations containing more, rather than less, information.” (130). This supports the notion of the human evolutionary capacity to seek out information, what Anderson considers selective perception rather than constructive, recognize an emotion and physiologically respond to it.

Adler’s reference to an infant who cries at birth due to a sense of inferiority, however, points us toward more complex ground where universal similarities or cultural differences in the definitions and outward expressions of emotions begin to cloud the water as researchers attempt to explain weeping; what Darwin previously called the “direct result of the contractions in the muscles of the face, which themselves are caused by violent respiration.” (Lutz 79). Darwin’s research concerning the mapping and function of the lacrimal system and accessory glands, along with the system’s functions for producing basal and continuous tears is correct. It also suggests that respiration and heart rate can transmit neurological information that set off emotional tears. But this does not explain why we actually cry at movies. As Darwin argues, “the cause of tears is always the same and always purely physical; they result from the contraction of muscles, which squeeze the tear gland and force them to secrete. Different cultural beliefs or demands can set this process in motion, but it is a physiological process.” (Lutz 80).

Crying as an Emotion

Darwin considered weeping to be “one of the special expressions of man.” (Lutz 18). He did not dismiss the possibility of cultural differences in the information contained within facial expressions and crying out. He cited a claim of New Zealand women who “can voluntarily shed tears in abundance; they meet for this purpose to mourn the dead, and they take pride in their crying in the most affecting manner.” He noted Sir John Lubbock’s 1870 The Origin of Civilization that referenced a New Zealand chief who “cried like a child because the sailors spoil his favorite cloak by powdering it with flour.” He looked to human abnormality research for examples and cited psychiatrist Sir-James Crichton-Browne who found that the mentally insane weep more readily than the sane and cretins do not weep at all. (Lutz 80).

We know that humans cry and animals do not. But do they both secrete tears? Yes. While animals do not cry like humans, they do produce tears. But correctly guessing an animal’s emotion is nothing more than a guess. For humans, there is some universality of emotions. Joseph Anderson states,

> Even though facial expressions and the understandings of them appear to be universal, there may be culturally specific display rules. That is, the circumstances under which it is appropriate to display certain emotions may vary from culture to culture. (134).

Though there are some cultural differences, Anderson concludes, “The capacities to cope with [character recognition and attribution] were developed through evolution, and the manifestations of those capacities are, as we might expect, similar from culture to culture.” (127).
Why Study Emotions?
In 1938, American psychologist B.F. Skinner stated that, “emotion is not primarily a response at all but rather a state of strength comparable to a drive.” This suggests that “emotion is significant only in terms of its effects on action or behavior.” (Lutz 264). Simply stated, crying is the resulting behavior of specific emotions. Further, it may be considered that emotions begin the mechanisms for tears. But not all emotions can be held liable.

In 1980, American psychologist Robert Plutchik postulated that the following emotions could be recognized, categorized and credited for leading to certain behaviors. These emotions are: Anger, Fear, Sadness, Disgust, Surprise, Curiosity, Acceptance and Joy. For purposes here, sadness and joy will be concentrated upon because these are the two emotions that Plutchik claim are feeling states resulting from stimulus events such as loss of valued object and gain of valued object respectively (which can be realistically represented in movies), two feeling states that may lead to emotional tears. He also states that cognitively these can be viewed as abandonment and possessing. Silvan Tomkins stated in the 1960’s that emotions “were the primary stimulators of human action.” Though most people can recognize these feeling states, defining the actual emotion is much more complex.

Dolf Zillman points out in Cinematic Creation of Emotion that “cognitive activity does not sufficiently define emotional experience” and also the transfer of excitation from an emotional reaction to subsequent ones, primarily to the immediately following reaction, is compromised in narrative viewing because, “As a rule, rather than the exception, featured events that instigate emotions are followed by the presentation of other events long before all relevant aspects of the instigated emotions have subsided.” (164). Movies can have the effect of “evoking and escalating” emotions in individuals quickly and afford little time for reflection, reconsideration and resolution. In other words, the emotional experiences generated by the narrative structure arrive quickly and are perceived as real. These emotions have an instant physiological effect. However, within minutes, even seconds, you can be thrown into another section of the narrative leaving the initial response behind but carrying its effects to the next scene. Zillmann labeled this cognitive emotional traveling, “excitation transfer.” Emotions can evoke a stirring, rousing and driving component. Excitation transfer occurs throughout emotional experience and can account for tears of sadness or joy in the real world or at the movies.

Crying at the Movies: Physiological and Emotional
Crying is a human action provoked or stimulated by emotions. Crying for a character in a movie is a result stimulated by the same emotions that affect us in the real world. People also tend to use emotional definitions as descriptions for the way a movie worked on an emotional level. Words like “sad” or “tearjerker” are used to describe particular films or genres. As Charles Eidsvick points out in Neurotransmitter Persistence, Narrative Structure, and Emotion: A Realist’s View, we stay with general levels of explanation, with abstraction, as long as we can, preferring to speak of narrative strategies and tactics and of philosophical issues, rather than of the messy neurochemicals and complex
interactions of real-world derived emotions. (42).

If a film character experiences abandonment or gain, the actor contracts the muscles in his face and outwardly expresses some type of emotion. Using close-ups, appropriate narrative music and its tonal qualities, and even reverse shots to show another character’s emotional reaction, we have an environment that can induce excitation or arousal in our nervous systems. But how can this arousal induce tears? Look to the nervous system that physiologists separate into the central nervous system (brain and spinal cord) and peripheral nervous system (remaining nerve cells in body). Lutz describes the separation of the peripheral nervous system into the autonomic and somatic nervous systems, each with its separate but related functions.

The somatic nervous system is composed of the neurons that get information from and control the skin and skeletal muscles, and is susceptible to willful control. The autonomic nervous system controls the organs such as the heart, lungs, kidneys, and liver, which usually function with a great deal of autonomy, and under no direct influence of a person’s conscious will. Both are obviously active in emotional experience. (99).

The emotional experience is developed from birth, and the capacities used are evolutionary. The emotions felt in the real world are the same as those felt for a movie character, and perceptual information selected from these characters can come in three phases. Joseph Anderson labels these processes in *The Reality of Illusion*, “character recognition” (129) which allows viewers to recognize and know moral character; “character attribution” (134) which allows viewers to recognize and judge presence at low levels; and “character identification” (137) which allows viewers to perceive movies not as what they mean but what they mean to the viewer. These processes allow us to enter a world where we can feel actual sympathy or repulsion as a result of a character’s appearance and actions.

With films in mind, consider the attention demanded in a theatre by wide screens that accommodate large aspect ratios. Consider surround sound that engulfs auditory systems and television sets that require specific spatial attention from the visual and auditory systems. In all instances, it should not be surprising that transmitters are firing and face muscles are slightly contracted. The lacrimal system is primed for a physiological state of crying. Charles Eidsvick references Jaak Panskeep’s 1998 neurological research in *Affective Neuroscience* where Panskeep states that emotions are always ready to respond if creatures are indeed information seekers. “The neural system [Panskeep] calls SEEKING has been accepted as a central emotional element in the neural and emotional system of animals, including of course, people.” Eidsvick continues, “Centered in the hypothalamic region, this system is tonic, which to say, never completely off….it simply runs at low level, firing at regular intervals (including during all stages of sleep).” Eidsvick concludes that information seeking, an evolutionary necessity, can involve “self-stimulation” as well as stimulation from the environment. It is also compatible with most universal emotions. (46). If attention is tuned in to a specific film in an information
seeking manner (this is without considering muscle contraction due to low and bright lighting affecting the retina), there is prior lower level information processing taking place before the characters and emotions can be the cause of crying.

So, do narrative situations have to be as realistic as possible to set these physiological and emotional responses into motion? Barbara Fisher Anderson states in Restoring Realism, “It is critical to the individual perceiver’s survival that the information gained from the ambient optic array be accurate enough to act upon.” (11). Barbara Anderson is referring to James J. Gibson’s contention that “The perceptual system resonates to certain invariant properties in the ambient array.” As long as the viewer perceives the optic array of light, a perceiver can feel real emotions. Humans, according to Barbara Anderson, understand the optical information “in terms of motion, light and shadow, cause and effect, what we might call the basic laws of physics that operate on an ecological plane.” (11). Anderson cites James J. Gibson, who writes,

> The optical information for distinguishing the various events can only be various disturbances of the local structure of the optic array…Nevertheless, strange to say, they are what we are visually most sensitive to, all of us, animals, babies, men, women, and moviegoers. (11).

But on the emotional side of tears, how is someone so involved that he experiences a veridical emotion? Joseph Anderson in The Reality of Illusion: An Ecological Approach to Cognitive Film Theory writes:

> If the rules of visual and auditory processing allow for the illusion that we are surrounded by the diegetic space, there is yet another set of rules that allows us to sustain the illusion of the reality of a motion picture’s fictional world. Actually, both the capacity of the visual system to process a synthetic array of light as reality, and the capacity of their mind to pretend, allow access to the motion picture. (113).

Charles Eidsvick explains emotional tears in movie viewing by distinguishing between two kinds of viewing emotions. He states,

> [A] emotions and [F] emotions, with [A] (artefact) emotions involving attention to the artistic or artificial aspects of film viewing, and [F] emotions linked to the experience of being in the fictional world and dealing with the concerns addressed by that world. (45).

Diegesis affords the viewer the opportunity to step in and out of the narrative world and experience the affordances in the same manner the character can experience sadness or joy. Joseph Anderson describes diegesis in The Reality of Illusion as “the film’s fictional world, or more precisely, the world available to the senses of the characters in a fictional work (for it is through the characters that we, the viewers,
interact with the fictional world.” (178).

But why does crying occur if the character’s emotions are not real? A character’s emotions are pretend and the feeling states created in the audience from these pretend emotions do not necessarily require action. Eidsvick refers to researcher Ed Tan who contradicts any argument for false emotions by stating these feelings are not, “necessarily experienced any less intensely than the corresponding emotion with a genuine action tendency. We are still dealing with true emotions.” (45).

**Conclusion**

Emotions are provoked by quick-paced narrative. This can be particularly true in traditional Hollywood dramas that quickly build conflict toward resolution. Zillman states,

> Excitation in response to particular stimuli…is bound to enter into subsequent experiences…Moreover, depending on the strength of the initial excitatory reaction and the time separation of emotions elicited at later times, residual excitation may intensify experiences further down the line. (165).

The incidental crying that occurs when emotions are triggered by movies may be an overreaction to physiological and emotional stimuli. Zillman states,

> At one time or another, everybody seems to have experienced the extraordinary intensity of frustration after rousing efforts, of joy upon the sudden resolution of nagging annoyances, of gaiety after unfounded apprehensions, or for that matter, of sexual pleasures in making up after acute conflict. (166).

Considering Eidsvick’s statement that, “a salient emotion (to use Grodal’s term), one strongly evoked, can be something a film is stuck with for large chunks of the story,” (42) and Joseph Anderson’s contention that what we see and hear in a movie is processed as real, it can be assumed viewers in a theatre or home watching a movie are susceptible to emotional responses due to our nervous systems’ consistent alertness to fire transmitters while we seek information in the environment. After the lower level processing is performed, character recognition and attribution processes commence. The initial empathy for a character, set off by an emotional scene, can affect the viewer in the form of sadness or joy. Subsequent physiological side effects can then come in the form of emotional tears, especially if the scenes leading up to a climactic part elicit higher respiratory and heart rate through editing techniques, such as fast cuts or cinematographic practices that create light and shadow, music or other techniques filmmakers use to guide our attention and emotions through a film.

In the real world, Zillman suggests that
“Emotions evoked in actuality by personal success or failure are usually allowed to run their course. A person, after achieving an important goal, may be ecstatic for minutes and jubilant for hours. Alternatively, a grievous experience may foster despair or sadness that similarly persists for comparatively long periods of time.” (164).

We may talk about a movie afterward with acquaintances and describe its emotional impact but the initial reaction of crying, if experienced upon first view, is rarely repeated although it is interesting that some viewers will cry with every repetition of the entire viewing (not a particular narrative sequence). Zillman states, “Mostly for psychological reasons and also as a result of reflection, emotions are not momentary experiences, but cinematic narrative treats them as if they were.” (164).

With physiological capacities, universalities of emotion recognition and a capacity to “play” within the fictional world through diegesis, it should be entirely possible for viewers to feel what the character is feeling (or pretending to feel) and contract our facial muscles as those in the movie, squeeze our ducts and produce tears. But tears are the side effect of physiological capacities and processes. Emotions simply take the blame for crying and though somewhat universal, emotions and experiences are not the same for everyone.

There are psychological questions. William Frey found “adrenocorticotropic (ACTH) hormone, which is usually found in prolactin, a hormone for milk production associated with depression and anxiety, in high levels of emotional tears, especially in women.” (Lutz 103). But Darwin and others proved that tears were mostly absorbed back into the body. This questions the assumption that crying relieves stress by expelling ACTH.

Jonathan Rottenberg introduces new complications for crying explanations in Is Crying beneficial?:

When asked on surveys to consider past episodes of crying, 60 to 70% of people report that crying brings them psychological benefits. Subjectively, this is reported as a release of tension and feeling of relief, a pattern captured by the term catharsis. However, when crying episodes are induced in a laboratory setting (e.g., by presenting a sad film clip), people rarely report that their tears provide any immediate mood benefits. In fact, in most laboratory studies, people who cry to an eliciting stimulus actually report feeling worse (e.g., increased sadness and distress) than do people who view the same stimulus without crying. Moreover, when indices of physiological arousal are concurrently measured, criers are more activated on these indices than are noncriers (e.g., increased heart rate or sweat-gland activity. (3).

For film scholars looking to explain crying at the movies, one has to look for physiological explanations supported by natural and physical sciences before turning to
philosophical explanations offered by psychology and sociology. Rottenberg continues, “survey data suggest that crying is cathartic, whereas laboratory studies often indicate that crying increases distress and arousal.” (4).

Hugo Munsterberg predicted in 1915 that the “photoplay would become more than any other art the domain of the psychologist who analyzes the working of mind.” Joseph and Barbara Anderson write, “The Case for an Ecological Metatheory” that he “couldn’t have been more wrong” and entrepreneurship took over filmmaking rather than psychologists. (Anderson and Anderson 1). There is not enough research into the psychology of films that can predict when and if people cry at movies and Hollywood producers seem better at making it happen through trial and error. If there is to be a debate about why we cry at the movies, the debate should continue in the area of psychology emotional experience, not proven physiological ground.

Works Cited


Biographical Sketch

Paul Glover received a B.A. in Communication and Information Sciences from the University of Alabama in 2001. From 2002-2004 he completed an M.A. in Communication Systems Management. Currently, he teaches Radio and Television production courses at Henderson State University and is finishing an M.F.A. in Digital Filmmaking from the University of Central Arkansas. He has also produced several documentaries for the Hot Springs Documentary Film Festival.

The Role of Psychotherapy in Mental Illness: Comparing and Evaluating Perspectives

Kristen N. Wade, B.S.
Graduate Student in Clinical Mental Health Counseling

Mentor: Linda English, Ph.D.
Associate Professor of Counselor Education

Abstract:
Throughout the course of the past several decades, we saw a change in the way both psychotherapy and mental illness is perceived. Research is needed to continue to gain insight into the benefits of psychotherapy. In this article, the role of psychotherapy in treating mental illness is evaluated in various scenarios over time (Arean & Alexopoulos, 2007; Coursey, Keller, & Farrell, 1995; Rogers, 1942, 1961; Winokur, 1973). Also examined are the roles of therapeutic alliance (Dinger, Strack, Sachsse, & Schauenburg, 2009; Marcus, Kashy, & Baldwin, 2009), counter transference issues (Horowitz, 2002), and client perspectives (Coursey et al., 1995; Pesale & Hilsenroth, 2009). Over the years, we have developed a better understanding of treatment options for the mentally ill. Many therapeutic professionals have adopted a recovery principle (Beeble & Salem, 2009). There are high hopes for the future of psychotherapy in the treatment of mental illness.

Over the course of many generations, the perspectives of therapists, clients, and society in general expanded as a deeper understanding emerged of the role psychotherapy plays in the treatment of mental illness. Although emerging research suggests mental health clients can greatly benefit from psychotherapy (Cuijpers, van Straten, Warmerdam, & Andersson, 2009; Hien, Cohen, & Campbell, 2009; Pesale & Hilsenroth, 2009), controversial research has left and continues to leave many questions indefinite. Does anyone really “need” psychotherapy, or can we at best say that an individual will